Full text

Turn on search term navigation

© 2019 Kfoury et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Use of shock waves to temporarily increase the permeability of the cell membrane is a promising approach in drug delivery and gene therapy to allow the translocation of macromolecules and small polar molecules into the cytoplasm. Our understanding of how the characteristics of the pressure profile of shock waves, such as peak pressure and pulse duration, influences membrane properties is limited. Here we study the response of lipid bilayer membranes to shock pulses with different pressure profiles using atomistic molecular dynamics simulations. From our simulation results, we find that the transient deformation/disordering of the membrane depends on both the magnitude and the pulse duration of the pressure profile of the shock pulse. For a low pressure impulse, peak pressure has a dominant effect on membrane structural changes, while for the high pressure impulse, we find that there exists an optimal pulse duration at which membrane deformation/disordering is maximized.

Details

Title
Effect of pressure profile of shock waves on lipid membrane deformation
Author
Kfoury, Ralph; Marzban, Bahador; Makki, Emad; ⨯ Michael L Greenfield; ⨯ Hongyan Yuan ⨯
First page
e0212566
Section
Research Article
Publication year
2019
Publication date
Feb 2019
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2185150104
Copyright
© 2019 Kfoury et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.