Content area
Full text
The role of the Psb28 protein in the structure and function of the photosystem II (PSII) complex has been studied in the cyanobacterium Synechocystis sp. PCC 6803. The protein was localized in the membrane fraction and, whereas most of the protein was detected as an unassembled protein, a small portion was found in the PSII core complex lacking the CP43 antenna (RC47). The association of Psb28 with RC47 was further confirmed by preferential isolation of RC47 from the strain containing a histidine-tagged derivative of Psb28 using nickel-affinity chromatography. However, the affinity-purified fraction also contained a small amount of the unassembled PSII inner antenna CP47 bound to Psb28-histidine, indicating a structural relationship between Psb28 and CP47. A psb28 deletion mutant exhibited slower autotrophic growth than wild type, although the absence of Psb28 did not affect the functional properties of PSII. The mutant showed accelerated turnover of the D1 protein, faster PSII repair, and a decrease in the cellular content of PSI. Radioactive labeling revealed a limitation in the synthesis of both CP47 and the PSI subunits PsaA/PsaB in the absence of Psb28. The mutant cells contained a high level of magnesium protoporphyrin IX methylester, a decreased level of protochlorophyllide, and released large quantities of protoporphyrin IX into the medium, indicating inhibition of chlorophyll (Chl) biosynthesis at the cyclization step yielding the isocyclic ring E. Overall, our results show the importance of Psb28 for synthesis of Chls and/or apoproteins of Chl-binding proteins CP47 and PsaA/PsaB.
PSII is a multisubunit pigment-protein complex of plants, algae, and cyanobacteria, which is responsible for oxidation of water and reduction of plastoquinone during oxygenic photosynthesis (Barber, 2006). In the heart of the complex, there are two similar membranespanning proteins, D1 and D2, that bind the cofactors involved in primary charge separation (Nanba and Satoh, 1987) and subsequent electron transfer within PSII (for review, see Barber, 2006). Peripherally to the D1-D2 heterodimer, there are two chlorophyll (Chl)- binding inner antenna proteins, CP47 and CP43, that deliver energy to the reaction center (RC), driving electron transfer. In addition, CP43 also provides important ligands to the Mn4Ca cluster, the site of water oxidation (Ferreira et al., 2004; Loll et al., 2005). These four large proteins are surrounded by a number of smaller membrane...





