It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Thermodynamic irreversibility is well characterized by the entropy production arising from non-equilibrium quantum processes. We show that the entropy production of a quantum system undergoing open-system dynamics can be formally split into a term that only depends on population unbalances, and one that is underpinned by quantum coherences. This allows us to identify a genuine quantum contribution to the entropy production in non-equilibrium quantum processes. We discuss how these features emerge both in Lindblad-Davies differential maps and finite maps subject to the constraints of thermal operations. We also show how this separation naturally leads to two independent entropic conservation laws for the global system-environment dynamics, one referring to the redistribution of populations between system and environment and the other describing how the coherence initially present in the system is distributed into local coherences in the environment and non-local coherences in the system-environment state. Finally, we discuss how the processing of quantum coherences and the incompatibility of non-commuting measurements leads to fundamental limitations in the description of quantum trajectories and fluctuation theorems.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Instituto de Física da Universidade de São Paulo, São Paulo, Brazil (GRID:grid.11899.38) (ISNI:0000 0004 1937 0722)
2 Universidade Federal de Goiás, Instituto de Física, Goiânia, Brazil (GRID:grid.411195.9) (ISNI:0000 0001 2192 5801)
3 Queen’s University Belfast, Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Belfast, UK (GRID:grid.4777.3) (ISNI:0000 0004 0374 7521)