Content area

Abstract

The threshold-free cluster enhancement (TFCE) approach integrates cluster information into voxel-wise statistical inference to enhance detectability of neuroimaging signal. Despite the significantly increased sensitivity, the application of TFCE is limited by several factors: (i) generalisation to data structures, like brain network connectivity data is not trivial, (ii) TFCE values are in an arbitrary unit, therefore, P-values can only be obtained by a computationally demanding permutation-test.

Here, we introduce a probabilistic approach for TFCE (pTFCE), that gives a simple general framework for topology-based belief boosting.

The core of pTFCE is a conditional probability, calculated based on Bayes' rule, from the probability of voxel intensity and the threshold-wise likelihood function of the measured cluster size. In this paper, we provide an estimation of these distributions based on Gaussian Random Field theory. The conditional probabilities are then aggregated across cluster-forming thresholds by a novel incremental aggregation method. pTFCE is validated on simulated and real fMRI data.

The results suggest that pTFCE is more robust to various ground truth shapes and provides a stricter control over cluster “leaking” than TFCE and, in many realistic cases, further improves its sensitivity.

Correction for multiple comparisons can be trivially performed on the enhanced P-values, without the need for permutation testing, thus pTFCE is well-suitable for the improvement of statistical inference in any neuroimaging workflow.

Implementation of pTFCE is available at https://spisakt.github.io/pTFCE.

Details

Title
Probabilistic TFCE: A generalized combination of cluster size and voxel intensity to increase statistical power
Author
Spisák, Tamás 1 ; Spisák, Zsófia; Zunhammer, Matthias 1 ; Bingel, Ulrike 1 ; Smith, Stephen 2 ; Nichols, Thomas 3 ; Kincses, Tamás 4 

 Department of Neurology, University Hospital Essen, Essen, Germany 
 Wellcome Centre For Integrative Neuroimaging (FMRIB), University of Oxford, Oxford, United Kingdom 
 Wellcome Centre For Integrative Neuroimaging (FMRIB), University of Oxford, Oxford, United Kingdom; Department of Statistics, University of Warwick, Coventry, United Kingdom 
 Department of Neurology, University of Szeged, Szeged, Hungary 
Publication title
NeuroImage; Amsterdam
Volume
185
Pages
12-26
Publication year
2019
Publication date
Jan 15, 2019
Publisher
Elsevier Limited
Place of publication
Amsterdam
Country of publication
United Kingdom
ISSN
10538119
e-ISSN
10959572
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
ProQuest document ID
2190982844
Document URL
https://www.proquest.com/scholarly-journals/probabilistic-tfce-generalized-combination/docview/2190982844/se-2?accountid=208611
Copyright
Copyright Elsevier Limited Jan 15, 2019
Last updated
2024-03-22
Database
ProQuest One Academic