It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Catalytic asymmetric conjugate allylation of unsaturated carbonyl compounds is usually difficult to achieve, as 1,2-addition proceeds dominantly and high asymmetric induction is a challenging task. Herein, we disclose a copper(I)-NHC complex catalyzed asymmetric 1,6-conjugate allylation of 2,2-dimethyl-6-alkenyl-4H-1,3-dioxin-4-ones. The phenolic hydroxyl group in NHC ligands is found to be pivotal to obtain the desired products. Both aryl group and alkyl group at δ-position are well tolerated with the corresponding products generated in moderate to high yields and high enantioselectivity. Moreover, both 2-substituted and 3-substituted allylboronates serve as acceptable allylation reagents. At last, the synthetic utility of the products is demonstrated in several transformations by means of the versatile terminal olefin and dioxinone groups.
Catalytic asymmetric conjugate allylation of unsaturated carbonyl compounds is usually difficult to achieve due to competing 1,2-addition. Here, the authors report a copper(I)-catalyzed asymmetric 1,6-conjugate allylation of 2,2-dimethyl-6-alkenyl-4H-1,3-dioxin-4-ones with good scope and high enantioselectivity.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Shanghai University of Traditional Chinese Medicine, The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine and China-Thailand Joint Research Institute of Natural Medicine, Shanghai, China (GRID:grid.412540.6) (ISNI:0000 0001 2372 7462); University of Chinese Academy of Sciences, Chinese Academy of Sciences, CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Shanghai, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419)
2 University of Chinese Academy of Sciences, Chinese Academy of Sciences, CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Shanghai, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419)
3 Shanghai University of Traditional Chinese Medicine, The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine and China-Thailand Joint Research Institute of Natural Medicine, Shanghai, China (GRID:grid.412540.6) (ISNI:0000 0001 2372 7462)