Abstract

Coral reefs are essential to many nations, and are currently in global decline. Although climate models predict decreases in seawater pH (∼0.3 units) and oxygen saturation (∼5 percentage points), these are exceeded by the current daily pH and oxygen fluctuations on many reefs (pH 7.8–8.7 and 27–241% O2 saturation). We investigated the effect of oxygen and pH fluctuations on coral calcification in the laboratory using the model species Acropora millepora. Light calcification rates were greatly enhanced (+178%) by increased seawater pH, but only at normoxia; hyperoxia completely negated this positive effect. Dark calcification rates were significantly inhibited (51–75%) at hypoxia, whereas pH had no effect. Our preliminary results suggest that within the current oxygen and pH range, oxygen has substantial control over coral growth, whereas the role of pH is limited. This has implications for reef formation in this era of rapid climate change, which is accompanied by a decrease in seawater oxygen saturation owing to higher water temperatures and coastal eutrophication.

Details

Title
Coral calcification under daily oxygen saturation and pH dynamics reveals the important role of oxygen
Author
Wijgerde, Tim; Silva, Catarina I F; Scherders, Vera; Judith van Bleijswijk; Osinga, Ronald
Pages
489-493
Section
RESEARCH ARTICLE
Publication year
2014
Publication date
2014
e-ISSN
20466390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761388575
Copyright
© 2014. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.