Abstract

Background

MutT homolog 1 (MTH1) sanitizes oxidized dNTP pools to promote the survival of cancer cells and its expression is frequently upregulated in cancers. Polyubiquitination stabilizes MTH1 to facilitate the proliferation of melanoma cells, suggesting the ubiquitin system controls the stability and function of MTH1. However, whether ubiquitination regulates MTH1 in gastric cancers has not been well defined. This study aims to investigate the interaction between MTH1 and a deubiquitinase, USP9X, in regulating the proliferation, survival, migration, and invasion of gastric cancer cells.

Methods

The interaction between USP9X and MTH1 was evaluated by co-immunoprecipitation (co-IP) in HGC-27 gastric cancer cells. siRNAs were used to interfere with USP9X expression in gastric cancer cell lines HGC-27 and MKN-45. MTT assays were carried out to examine the proliferation, propidium iodide (PI) and 7-AAD staining assays were performed to assess the cell cycle, Annexin V/PI staining assays were conducted to examine the apoptosis, and transwell assays were used to determine the migration and invasion of control, USP9X-deficient, and USP9X-deficient plus MTH1-overexpressing HGC-27 and MKN-45 gastric cancer cells.

Results

Co-IP data show that USP9X interacts with and deubiquitinates MTH1. Overexpression of USP9X elevates MTH1 protein level by downregulating its ubiquitination, while knockdown of USP9X has the opposite effect on MTH1. USP9X deficiency in HGC-27 and MKN-45 cells causes decreased proliferation, cell cycle arrest, extra apoptosis, and defective migration and invasion, which could be rescued by excessive MTH1.

Conclusion

USP9X interacts with and stabilizes MTH1 to promote the proliferation, survival, migration and invasion of gastric cancer cells.

Details

Title
USP9X regulates the proliferation, survival, migration and invasion of gastric cancer cells by stabilizing MTH1
Author
Xu, Wenji; Zhang, Yaping; Su, Yingrui; Li, Libin; Yang, Xinxia; Wang, Lixing; Gao, Hongzhi
Pages
1-10
Section
Research
Publication year
2024
Publication date
2024
Publisher
BioMed Central
e-ISSN
1471230X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3091290237
Copyright
© 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.