Abstract
Background
The harmful effects of fine particles with an aerodynamic diameter less than 2.5 μm (PM2.5) on respiratory organs are emphasized in pollution studies because PM2.5 have high deposition rates in the respiratory organs and contain various hazardous compounds. In this study, a sampling method combining a high-volume air sampler (HV) with a PM2.5 impactor was developed for collecting large quantities of PM2.5. The concentrations of elemental carbon (EC), organic carbon (OC), inorganic ions, and polycyclic aromatic hydrocarbons (PAHs) were measured in PM2.5 collected by the high-and low-volume air samplers (LV).
Results
Similar results were obtained from the HV and LV methods, with respect to inorganic carbon, organic carbon, sodium ions, ammonium ions, and PAHs with more than four rings. Because of the much larger amount of PM2.5 could be collected by the HV method, the trace constituents, that were difficult to detect by the conventional LV method, were readily detected by the HV method. Furthermore, when the microsuspension method that was modified more sensitive Ames mutagenicity test, was used to test the PM2.5 samples at four sites, mutagenic activities were detected by strains TA100 and TA98. Most of the mutagenic activity was associated with the PM2.5 fraction and mutagenic activity in winter was greater than that in summer.
Conclusions
The HV method produced results similar to those from the conventional LV method with respect to the PM2.5 components present in the atmosphere in relatively high concentrations, but its 40-fold greater flow rate enabled the detection of mutagenic compounds present in only trace concentrations.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





