It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A visible light active Bi0.9Ho0.1FeO3 nanoparticles/TiO2 composite thin films with different mol.% of Bi0.9Ho0.1FeO3 were successfully prepared via non-aqueous sol-gel method. The incorporation of 5, 10 and 20 mol.% Bi0.9Ho0.1FeO3 nanoparticles in the precursor solution of TiO2 brings modifications in the functional properties of the composite thin films. XPS analysis indicates that interdiffusion of Fe3+, Ho3+, Bi3+/Ti4+ ions through the interfaces between Bi0.9Ho0.1FeO3 nanoparticles and TiO2 matrix reduces the concentration of Ti3+ ions. X-ray diffraction analysis affirms that TiO2 and Bi0.9Ho0.1FeO3 retain anatase and orthorhombic phase respectively in composite films. The composite thin film containing 20 mol.% Bi0.9Ho0.1FeO3 nanoparticles exhibits the most prominent absorption phenomenon in visible region and has significantly reduced indirect band gap of 2.46 eV compared to that of pure TiO2 (3.4 eV). Hall effect measurements confirm that the resistivity of composite film increases by ∼2.33 orders of magnitude and its carrier concentration decreases by 1.8 orders of magnitude at 5 mol.% Bi0.9Ho0.1FeO3 nanoparticles addition compared to those of pure TiO2 film. Moreover, the pure film exhibits diamagnetism, whereas the composite films have both large ferromagnetic and small diamagnetic components. The findings in this research justify that the composite film can be a potential candidate for making improved photocatalyst, resistors and spintronic devices.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Bangladesh University of Engineering & Technology, Department of Materials and Metallurgical Engineering, Dhaka, Bangladesh (GRID:grid.411512.2) (ISNI:0000 0001 2223 0518)
2 Bangladesh University of Engineering & Technology, Department of Glass and Ceramic Engineering, Dhaka, Bangladesh (GRID:grid.411512.2) (ISNI:0000 0001 2223 0518)
3 Bangladesh Council of Scientific and Industrial Research, Institute of Fuel Research & Development, Dhaka, Bangladesh (GRID:grid.466521.2) (ISNI:0000 0001 2034 6517)