Content area

Abstract

Mass spectrometry is a predominant experimental technique in metabolomics and related fields, but metabolite structural elucidation remains highly challenging. We report SIRIUS 4 (https://bio.informatik.uni-jena.de/sirius/), which provides a fast computational approach for molecular structure identification. SIRIUS 4 integrates CSI:FingerID for searching in molecular structure databases. Using SIRIUS 4, we achieved identification rates of more than 70% on challenging metabolomics datasets.

SIRIUS 4 is a fast and highly accurate tool for molecular structure interpretation from mass-spectrometry-based metabolomics data.

Details

Title
SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information
Author
Dührkop Kai 1   VIAFID ORCID Logo  ; Fleischauer Markus 1   VIAFID ORCID Logo  ; Ludwig, Marcus 1   VIAFID ORCID Logo  ; Aksenov, Alexander A 2   VIAFID ORCID Logo  ; Melnik, Alexey V 2   VIAFID ORCID Logo  ; Meusel Marvin 3 ; Dorrestein, Pieter C 2   VIAFID ORCID Logo  ; Rousu Juho 4   VIAFID ORCID Logo  ; Böcker Sebastian 1   VIAFID ORCID Logo 

 Friedrich-Schiller University, Chair for Bioinformatics, Jena, Germany (GRID:grid.9613.d) (ISNI:0000 0001 1939 2794) 
 University of California, La Jolla, Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego, USA (GRID:grid.266100.3) (ISNI:0000 0001 2107 4242); University of California, La Jolla, Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego, USA (GRID:grid.266100.3) (ISNI:0000 0001 2107 4242) 
 Friedrich-Schiller University, Chair for Bioinformatics, Jena, Germany (GRID:grid.9613.d) (ISNI:0000 0001 1939 2794); Saarland University, Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Pharmaceutical Biotechnology, Saarbrücken, Germany (GRID:grid.11749.3a) (ISNI:0000 0001 2167 7588) 
 Aalto University, Helsinki Institute for Information Technology, Department of Computer Science, Espoo, Finland (GRID:grid.5373.2) (ISNI:0000000108389418) 
Pages
299-302
Publication year
2019
Publication date
Apr 2019
Publisher
Nature Publishing Group
ISSN
15487091
e-ISSN
15487105
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2199201451
Copyright
2019© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019