It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Electromyography (EMG) is the standard technology for monitoring muscle activity in laboratory environments, either using surface electrodes or fine wire electrodes inserted into the muscle. Due to limitations such as cost, complexity, and technical factors, including skin impedance with surface EMG and the invasive nature of fine wire electrodes, EMG is impractical for use outside of a laboratory environment. Mechanomyography (MMG) is an alternative to EMG, which shows promise in pervasive applications. The present study used an exerting squat-based task to induce muscle fatigue. MMG and EMG amplitude and frequency were compared before, during, and after the squatting task. Combining MMG with inertial measurement unit (IMU) data enabled segmentation of muscle activity at specific points: entering, holding, and exiting the squat. Results show MMG measures of muscle activity were similar to EMG in timing, duration, and magnitude during the fatigue task. The size, cost, unobtrusive nature, and usability of the MMG/IMU technology used, paired with the similar results compared to EMG, suggest that such a system could be suitable in uncontrolled natural environments such as within the home.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Imperial College London, Department of Mechanical Engineering, London, UK (GRID:grid.7445.2) (ISNI:0000 0001 2113 8111)
2 University of Southampton, Faculty of Health Science, Southampton, UK (GRID:grid.5491.9) (ISNI:0000 0004 1936 9297)
3 Northeastern University, Department of Mechanical and Industrial Engineering, Boston, USA (GRID:grid.261112.7) (ISNI:0000 0001 2173 3359); Northeastern University, Department of Bioengineering, Boston, USA (GRID:grid.261112.7) (ISNI:0000 0001 2173 3359)