It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Skeletal muscle voltage-gated Na+ channel (NaV1.4) activity is subject to calmodulin (CaM) mediated Ca2+-dependent inactivation; no such inactivation is observed in the cardiac Na+ channel (NaV1.5). Taken together, the crystal structures of the NaV1.4 C-terminal domain relevant complexes and thermodynamic binding data presented here provide a rationale for this isoform difference. A Ca2+-dependent CaM N-lobe binding site previously identified in NaV1.5 is not present in NaV1.4 allowing the N-lobe to signal other regions of the NaV1.4 channel. Consistent with this mechanism, removing this binding site in NaV1.5 unveils robust Ca2+-dependent inactivation in the previously insensitive isoform. These findings suggest that Ca2+-dependent inactivation is effected by CaM’s N-lobe binding outside the NaV C-terminal while CaM’s C-lobe remains bound to the NaV C-terminal. As the N-lobe binding motif of NaV1.5 is a mutational hotspot for inherited arrhythmias, the contributions of mutation-induced changes in CDI to arrhythmia generation is an intriguing possibility.
Skeletal muscle voltage-gated Na+ channel (NaV1.4) activity is subject to calmodulin (CaM) mediated Ca2 +-dependent inactivation while cardiac NaV1.5 is not. Here authors use structural biology, binding and electrophysiology to parse the Ca2 +-dependent changes of CaM when bound to the NaV1.4.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Johns Hopkins University School of Medicine, Department of Biophysics and Biophysical Chemistry, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311)
2 Columbia University, Department of Physiology and Cellular Biophysics, New York, USA (GRID:grid.21729.3f) (ISNI:0000000419368729)
3 Johns Hopkins University School of Medicine, Division of Cardiology, Department of Medicine, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311)
4 Albert Einstein College of Medicine, Division of Cardiology, Department of Medicine, Bronx, USA (GRID:grid.251993.5) (ISNI:0000000121791997)
5 Johns Hopkins University School of Medicine, Department of Biophysics and Biophysical Chemistry, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311); Johns Hopkins University School of Medicine, Division of Cardiology, Department of Medicine, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311); Johns Hopkins University School of Medicine, Department of Oncology, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311)