It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Single and Multiple constant multiplications are key operations in several digital signal processing algorithms. This paper develops a mathematical framework for a novel adaptation of the parallel shift-and-add multiplication algorithm for online arithmetic. Based on this adaptation, online constant coefficient multipliers for single constant multiplication (SCM) and multiple constant multiplications (MCM) of streaming floating-point inputs are presented. A finite impulse response filter implementation on Xilinx Virtex 6 Field programmable gate array (FPGA) is used as an example to illustrate the merits of these filters. The results of this implementation show that online multipliers reduce resource utilization, online delay and increase clock frequency in comparison to existing designs. Online multiple constant multipliers also show an average reduction of 65% in the number of slice LUTs and 37% in the number of slice registers required when compared to existing digit-serial multiple constant multipliers. Thus, the proposed online arithmetic operators appear to be good alternatives for constant coefficient multiplication
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer