It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Single-site catalysts feature high catalytic activity but their facile construction and durable utilization are highly challenging. Herein, we report a simple impregnation-adsorption method to construct platinum single-site catalysts by synergic micropore trapping and nitrogen anchoring on hierarchical nitrogen-doped carbon nanocages. The optimal catalyst exhibits a record-high electrocatalytic hydrogen evolution performance with low overpotential, high mass activity and long stability, much superior to the platinum-based catalysts to date. Theoretical simulations and experiments reveal that the micropores with edge-nitrogen-dopants favor the formation of isolated platinum atoms by the micropore trapping and nitrogen anchoring of [PtCl6]2-, followed by the spontaneous dechlorination. The platinum-nitrogen bonds are more stable than the platinum-carbon ones in the presence of adsorbed hydrogen atoms, leading to the superior hydrogen evolution stability of platinum single-atoms on nitrogen-doped carbon. This method has been successfully applied to construct the single-site catalysts of other precious metals such as palladium, gold and iridium.
Single-atom catalysts maximize atom usage within supports, but preparations can be complex. Here, authors show a facile impregnation-adsorption method to attach single noble-metal atoms to N-doped porous carbon and demonstrate strong electrocatalytic hydrogen evolution performances for Pt catalysts.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 Nanjing University, Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing, China (GRID:grid.41156.37) (ISNI:0000 0001 2314 964X)
2 Nanjing University, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing, China (GRID:grid.41156.37) (ISNI:0000 0001 2314 964X)
3 Chinese Academy of Sciences, Shanghai Advanced Research Institute, Shanghai, China (GRID:grid.9227.e) (ISNI:0000000119573309)
4 Institute of Metal Research, Chinese Academy of Sciences, Shenyang National Laboratory for Materials Science, Shenyang, China (GRID:grid.458487.2) (ISNI:0000 0004 1803 9309)
5 Nanjing University, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing, China (GRID:grid.41156.37) (ISNI:0000 0001 2314 964X); Nanjing University, Research Center for Environmental Nanotechnology (ReCENT), Nanjing, China (GRID:grid.41156.37) (ISNI:0000 0001 2314 964X)