Content area

Abstract

A method for detecting electronic data theft from computer networks is described, capable of recognizing patterns of remote exfiltration occurring over days to weeks. Normal traffic flow data, in the form of a host's ingress and egress bytes over time, is used to train an ensemble of one-class learners. The detection ensemble is modular, with individual classifiers trained on different traffic features thought to characterize malicious data transfers. We select features that model the egress to ingress byte balance over time, periodicity, short time-scale irregularity, and density of the traffic. The features are most efficiently modeled in the frequency domain, which has the added benefit that variable duration flows are transformed to a fixed-size feature vector, and by sampling the frequency space appropriately, long-duration flows can be tested. When trained on days- or weeks-worth of traffic from individual hosts, our ensemble achieves a low false positive rate (<2%) on a range of different system types. Simulated exfiltration samples with a variety of different timing and data characteristics were generated and used to test ensemble performance on different kinds of systems: when trained on a client workstation's external traffic, the ensemble was generally successful at detecting exfiltration that is not simultaneously ingress-heavy, connection-sparse, and of short duration---a combination that is not optimal for attackers seeking to transfer large amounts of data. Remote exfiltration is more difficult to detect from egress-heavy systems, like web servers, with normal traffic exhibiting timing characteristics similar to a wide range of exfiltration types.

Details

1009240
Identifier / keyword
Title
Malicious Overtones: hunting data theft in the frequency domain with one-class learning
Publication title
arXiv.org; Ithaca
Publication year
2019
Publication date
Apr 9, 2019
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2019-11-15
Milestone dates
2019-04-09 (Submission v1)
Publication history
 
 
   First posting date
15 Nov 2019
ProQuest document ID
2207664779
Document URL
https://www.proquest.com/working-papers/malicious-overtones-hunting-data-theft-frequency/docview/2207664779/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2020-05-15
Database
ProQuest One Academic