Abstract

Direct atomic-scale observations and measurements on dynamics of amorphous metallic nanoparticles (a-NPs) are challenging owing to the insufficient consciousness to their striking characterizations and the difficulties in technological approaches. In this study, we observe coalescence process of the a-NPs at atomic scale. We measure the viscosity of the a-NPs through the particles coalescence by in situ method. We find that the a-NPs have fast dynamics, and the viscosity of the a-NPs exhibits a power law relationship with size of the a-NPs. The a-NPs with sizes smaller than 3 nm are in a supercooled liquid state and exhibit liquid-like behaviours with a decreased viscosity by four orders of magnitude lower than that of bulk glasses. These results reveal the intrinsic flow characteristics of glasses in low demension, and pave a way to understand the liquid-like behaviours of low dimension glass, and are also of key interest to develop size-controlled nanodevices.

Nanoscale materials often exhibit size-dependent behaviour. Here, the authors use electron microscopy to quantitatively study the size-related dynamics of amorphous metallic nanoparticles, finding that particles below a critical size are in a supercooled liquid state at room temperature, with a viscosity much lower than that of bulk glasses.

Details

Title
Liquid-like behaviours of metallic glassy nanoparticles at room temperature
Author
Cao, C R 1 ; Huang, K Q 1 ; Shi, J A 1 ; Zheng, D N 1 ; Wang, W H 2 ; Gu L 1   VIAFID ORCID Logo  ; Bai, H Y 2 

 Chinese Academy of Sciences, Institute of Physics, Beijing, P. R. China (GRID:grid.9227.e) (ISNI:0000000119573309); University of Chinese Academy of Sciences, Center of Materials Science and Optoelectronics Engineering, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419) 
 Chinese Academy of Sciences, Institute of Physics, Beijing, P. R. China (GRID:grid.9227.e) (ISNI:0000000119573309); University of Chinese Academy of Sciences, Center of Materials Science and Optoelectronics Engineering, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419); Songshan Lake Materials Laboratory, Dongguan, Guangdong, China (GRID:grid.410726.6) 
Publication year
2019
Publication date
2019
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2216765585
Copyright
© The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.