Full Text

Turn on search term navigation

© 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Within the framework of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapour assessment (WAVAS-II), profile-to-profile comparisons of stratospheric and lower mesospheric water vapour were performed by considering 33 data sets derived from satellite observations of 15 different instruments. These comparisons aimed to provide a picture of the typical biases and drifts in the observational database and to identify data-set-specific problems. The observational database typically exhibits the largest biases below 70 hPa, both in absolute and relative terms. The smallest biases are often found between 50 and 5 hPa. Typically, they range from 0.25 to 0.5 ppmv (5 % to 10 %) in this altitude region, based on the 50 % percentile over the different comparison results. Higher up, the biases increase with altitude overall but this general behaviour is accompanied by considerable variations. Characteristic values vary between 0.3 and 1 ppmv (4 % to 20 %). Obvious data-set-specific bias issues are found for a number of data sets. In our work we performed a drift analysis for data sets overlapping for a period of at least 36 months. This assessment shows a wide range of drifts among the different data sets that are statistically significant at the 2σ uncertainty level. In general, the smallest drifts are found in the altitude range between about 30 and 10 hPa. Histograms considering results from all altitudes indicate the largest occurrence for drifts between 0.05 and 0.3 ppmvdecade-1. Comparisons of our drift estimates to those derived from comparisons of zonal mean time series only exhibit statistically significant differences in slightly more than 3 % of the comparisons. Hence, drift estimates from profile-to-profile and zonal mean time series comparisons are largely interchangeable. As for the biases, a number of data sets exhibit prominent drift issues. In our analyses we found that the large number of MIPAS data sets included in the assessment affects our general results as well as the bias summaries we provide for the individual data sets. This is because these data sets exhibit a relative similarity with respect to the remaining data sets, despite the fact that they are based on different measurement modes and different processors implementing different retrieval choices. Because of that, we have by default considered an aggregation of the comparison results obtained from MIPAS data sets. Results without this aggregation are provided on multiple occasions to characterise the effects due to the numerous MIPAS data sets. Among other effects, they cause a reduction of the typical biases in the observational database.

Details

Title
The SPARC water vapour assessment II: profile-to-profile comparisons of stratospheric and lower mesospheric water vapour data sets obtained from satellites
Author
Lossow, Stefan 1   VIAFID ORCID Logo  ; Khosrawi, Farahnaz 1 ; Kiefer, Michael 1 ; Walker, Kaley A 2   VIAFID ORCID Logo  ; Bertaux, Jean-Loup 3   VIAFID ORCID Logo  ; Blanot, Laurent 4 ; Russell, James M 5   VIAFID ORCID Logo  ; Remsberg, Ellis E 6   VIAFID ORCID Logo  ; Gille, John C 7 ; Sugita, Takafumi 8   VIAFID ORCID Logo  ; Sioris, Christopher E 9 ; Dinelli, Bianca M 10   VIAFID ORCID Logo  ; Papandrea, Enzo 11   VIAFID ORCID Logo  ; Raspollini, Piera 12   VIAFID ORCID Logo  ; García-Comas, Maya 13   VIAFID ORCID Logo  ; Stiller, Gabriele P 1   VIAFID ORCID Logo  ; Thomas von Clarmann 1 ; Dudhia, Anu 14 ; Read, William G 15 ; Nedoluha, Gerald E 16 ; Damadeo, Robert P 6   VIAFID ORCID Logo  ; Zawodny, Joseph M 6 ; Weigel, Katja 17   VIAFID ORCID Logo  ; Rozanov, Alexei 17 ; Azam, Faiza 17 ; Bramstedt, Klaus 17   VIAFID ORCID Logo  ; Noël, Stefan 17 ; Burrows, John P 17   VIAFID ORCID Logo  ; Sagawa, Hideo 18 ; Kasai, Yasuko 19 ; Urban, Joachim 20 ; Eriksson, Patrick 21   VIAFID ORCID Logo  ; Murtagh, Donal P 21   VIAFID ORCID Logo  ; Hervig, Mark E 22 ; Högberg, Charlotta 23 ; Hurst, Dale F 24   VIAFID ORCID Logo  ; Rosenlof, Karen H 24   VIAFID ORCID Logo 

 Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Hermann-von-Helmholtz-Platz 1, 76344 Leopoldshafen, Germany 
 University of Toronto, Department of Physics, 60 St. George Street, Toronto, ON M5S 1A7, Canada 
 LATMOS, CNRS/UVSQ/IPSL, Quartier des Garennes, 11 Boulevard d'Alembert, 78280 Guyancourt, France 
 ACRI-ST, 260 Route du Pin Montard, 06904 Sophia-Antipolis CEDEX, France 
 Hampton University, Center for Atmospheric Sciences, 23 Tyler Street, Hampton, VA 23669, USA 
 NASA Langley Research Center, 21 Langley Boulevard, Hampton, VA 23681, USA 
 National Center for Atmospheric Research, Atmospheric Chemistry Observations & Modeling Laboratory, P.O. Box 3000, Boulder, CO 80307-3000, USA; University of Colorado, Atmospheric and Oceanic Sciences, Boulder, CO 80309-0311, USA 
 National Institute for Environmental Studies, Center for Global Environmental Research, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan 
 Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, ON M3H 5T4, Canada 
10  Istituto di Scienze dell'Atmosfera e del Clima del Consiglio Nazionale delle Ricerche (ISAC-CNR), Via Gobetti, 101, 40129 Bologna, Italy 
11  Istituto di Scienze dell'Atmosfera e del Clima del Consiglio Nazionale delle Ricerche (ISAC-CNR), Via Gobetti, 101, 40129 Bologna, Italy; Serco SpA, Via Sciadonna, 24–26, 00044 Frascati, Italy 
12  Istituto di Fisica Applicata del Consiglio Nazionale delle Ricerche (IFAC-CNR), Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Italy 
13  Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía, 18008 Granada, Spain 
14  University of Oxford, Atmospheric Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK 
15  Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, USA 
16  Naval Research Laboratory, Remote Sensing Division, 4555 Overlook Avenue Southwest, Washington, DC 20375, USA 
17  University of Bremen, Institute of Environmental Physics, Otto-Hahn-Allee 1, 28334 Bremen, Germany 
18  Kyoto Sangyo University, Faculty of Science, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan 
19  National Institute of Information and Communications Technology (NICT), 20 THz Research Center, 4-2-1 Nukui-kita, Koganei, Tokyo 184-8795, Japan 
20  Chalmers University of Technology, Department of Space, Earth and Environment, Hörsalsvägen 11, 41296 Göteborg, Sweden; deceased, 14 August 2014 
21  Chalmers University of Technology, Department of Space, Earth and Environment, Hörsalsvägen 11, 41296 Göteborg, Sweden 
22  GATS Inc., 65 South Main Street #5, Driggs, ID 83442, USA 
23  Department of Physical Geography, Stockholm University, Svante-Arrhenius-väg 8, 10691 Stockholm, Sweden 
24  NOAA Earth System Research Laboratory, Global Monitoring Division, 325 Broadway, Boulder, CO 80305, USA 
Pages
2693-2732
Publication year
2019
Publication date
2019
Publisher
Copernicus GmbH
ISSN
18671381
e-ISSN
18678548
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2222590436
Copyright
© 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.