Full Text

Turn on search term navigation

© 2019. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background: Animal studies have demonstrated the therapeutic effect of mesenchymal stem cells (MSCs) on osteogenesis, but little is known about the functions of exosomes (Exos) released by bone MSCs (BMSCs). Here, we investigated the effect of BMSC Exos on steroid-induced femoral head necrosis (SFHN) and explored the vital genes involved in this process.

Materials and methods: BMSCs were isolated from healthy and SFHN rats. BMSC Exos were isolated using the Exosome Precipitation Kit and characterized by transmission electron microscopy and Western blotting. SFHN BMSCs were incubated with Exos from healthy BMSCs. Osteogenic ability was assessed by oil red O staining and alizarine red staining. Differentially expressed genes (DEGs) induced by Exos were screened using the Osteogenesis RT2 Profiler PCR Array. The effect of upregulated Sox9 was examined using lentivirus-mediated siRNA.

Results: The results revealed that BMSC Exos were 100–150 nm in size and expressed CD63. Moreover, BMSC Exo-treated SFHN cells exhibited suppressed adipogenesis compared to model cells. PCR array showed that eleven and nine genes were upregulated and downregulated, respectively, in the BMSC Exo-treated SFHN cells compared to the model group. Among the DEGs, osteogenesis-related genes, including Bmp2, Bmp6, Bmpr1b, Mmp9, and Sox9, may play important roles in SFHN. Furthermore, the DEGs were mainly involved in immune response, osteoblast differentiation, and in the transforming growth factor-β/bone morphogenetic protein signaling pathway. The level of the SOX9 protein was upregulated by Exos, and Sox9 silencing significantly decreased the osteogenic effect of BMSC Exos.

Conclusion: Our data suggest that Exos derived from BMSCs mainly affect SFHN osteogenesis, and this finding can be further investigated to develop a novel therapeutic agent for SFHN.

Details

Title
Osteogenic effect of bone marrow mesenchymal stem cell-derived exosomes on steroid-induced osteonecrosis of the femoral head
Author
Fang, Shanhong; Li, Yongfeng; Chen, Peng
Pages
45-55
Section
Original Research
Publication year
2019
Publication date
2019
Publisher
Taylor & Francis Ltd.
e-ISSN
1177-8881
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2226183682
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.