Content area

Abstract

Topoisomerase II (Topo II) preferentially cuts DNA at alternating purine-pyrimidine repeats. Different Topo II poisons may affect Topo II to produce distinct drug-specific DNA cleavage patterns. GL331 is a new podophyllotoxin derivative exhibiting potent Topo II-poisoning activity. Therefore, the sequence selectivity of GL331-induced DNA cleavage was determined.

Human gastric adenocarcinoma SC-M1 cells were treated with GL331, and the resultant DNA fragments were isolated by SDS-K+ precipitation. These DNA fragments were further cloned and sequenced to exhibit GL331-induced DNA cleavage sites. In addition, the telomere damage was detected by Southern blot analyses using a (TTAGGG)4 probe. GL331's effect on telomerase was examined using the TRAP assay.

The selective sequences of GL331-induced DNA cleavage were analyzed. The first nucleotide 3'-terminal to the cleavage sites was preferentially C or G and followed by the second nucleotide T. More than 50% of GL331-induced DNA cleavage fragments exhibited AT-rich sequences in the first 20 nucleotides. In addition, the telomeric damage was observed both from GL331-treated SC-M1 cells and in vitro incubation of genomic DNA with GL331 and purified human Topo II. Although GL331 treatment reduced cellular telomerase activity, in vitro reaction data suggested that GL331 was not a telomerase inhibitor.

GL331 preferentially induced Topo II-mediated DNA cleavage at (C/G)T sites. Because the telomeric repeat sequence contains GL331's GT preference site, the telomere was identified as one of the targets of GL331-induced DNA damage.

Details

Title
A novel topoisomerase II poison GL331 preferentially induces DNA cleavage at (C/G)T sites and can cause telomere DNA damage
Author
Chun-Chung, Lee; Huang, Tze-Sing
Pages
846-51
Section
Research paper
Publication year
2001
Publication date
Jun 2001
Publisher
Springer Nature B.V.
ISSN
07248741
e-ISSN
1573904X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
222703476
Copyright
Copyright Kluwer Academic Publishers Jun 2001