Content area

Abstract

The simulation of heat flow through heterogeneous material is important for the design of structural and electronic components. Classical analytical solutions to the heat equation PDE are not known for many such domains, even those having simple geometries. The finite element method can provide approximations to a weak form continuum solution, with increasing accuracy as the number of degrees of freedom in the model increases. This comes at a cost of increased memory usage and computation time; even when taking advantage of sparse matrix techniques for the finite element system matrix. We summarize recent approaches in solving problems in structural mechanics and steady state heat conduction which do not require the explicit assembly of any system matrices, and adapt them to a method for solving the time-depended flow of heat. These approaches are highly parallelizable, and can be performed on graphical processing units (GPUs). Furthermore, they lend themselves to the simulation of heterogeneous material, with a minimum of added complexity. We present the mathematical framework of assembly-free FEM approaches, through which we summarize the benefits of GPU computation. We discuss our implementation using the OpenCL computing framework, and show how it is further adapted for use on multiple GPUs. We compare the performance of single and dual GPUs implementations of our method with previous GPU computing strategies from the literature and a CPU sparse matrix approach. The utility of the novel method is demonstrated through the solution of a real-world coefficient inverse problem that requires thousands of transient heat flow simulations, each of which involves solving a 1 million degree of freedom linear system over hundreds of time steps.

Details

1009240
Title
Analysis of heterogeneous computing approaches to simulating heat transfer in heterogeneous material
Publication title
arXiv.org; Ithaca
Publication year
2019
Publication date
May 18, 2019
Section
Computer Science; Mathematics
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2019-05-21
Milestone dates
2019-05-18 (Submission v1)
Publication history
 
 
   First posting date
21 May 2019
ProQuest document ID
2228404537
Document URL
https://www.proquest.com/working-papers/analysis-heterogeneous-computing-approaches/docview/2228404537/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2019-09-09
Database
ProQuest One Academic