Full text

Turn on search term navigation

© 2019 López-Mancilla et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this work, a synchronization scheme for networks of complex systems is presented. The proposed synchronization scheme uses a control law obtained with some definitions from graph theory and solving the Model-Matching Problem for complex networks. In particular, Rössler, Chen, Lorenz and Lü chaotic systems are used as complex chaotic systems into complex networks. Particular cases with regular and irregular networks of six identical chaotic systems are implemented, with some well-known topologies as star and ring small-world, and tree topologies. Highlighting, the obtained control law is applied to synchronize an irregular network of six different chaotic systems in a tree topology. The usefulness and advantages of the proposed synchronization scheme are highlighted performing numerical simulations of the chaotic complex networks.

Details

Title
Synchronization of complex networks of identical and nonidentical chaotic systems via model-matching control
Author
López-Mancilla, D; López-Cahuich, G; Posadas-Castillo, C; Castañeda, C E; García-López, J H; Vázquez-Gutiérrez, J L; Tlelo-Cuautle, E
First page
e0216349
Section
Research Article
Publication year
2019
Publication date
May 2019
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2229633263
Copyright
© 2019 López-Mancilla et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.