Abstract

Although a key driver of Earth’s climate system, global land-atmosphere energy fluxes are poorly constrained. Here we use machine learning to merge energy flux measurements from FLUXNET eddy covariance towers with remote sensing and meteorological data to estimate global gridded net radiation, latent and sensible heat and their uncertainties. The resulting FLUXCOM database comprises 147 products in two setups: (1) 0.0833° resolution using MODIS remote sensing data (RS) and (2) 0.5° resolution using remote sensing and meteorological data (RS + METEO). Within each setup we use a full factorial design across machine learning methods, forcing datasets and energy balance closure corrections. For RS and RS + METEO setups respectively, we estimate 2001–2013 global (±1 s.d.) net radiation as 75.49 ± 1.39 W m−2 and 77.52 ± 2.43 W m−2, sensible heat as 32.39 ± 4.17 W m−2 and 35.58 ± 4.75 W m−2, and latent heat flux as 39.14 ± 6.60 W m−2 and 39.49 ± 4.51 W m−2 (as evapotranspiration, 75.6 ± 9.8 × 103 km3 yr−1 and 76 ± 6.8 × 103 km3 yr−1). FLUXCOM products are suitable to quantify global land-atmosphere interactions and benchmark land surface model simulations.

Design Type(s)

modeling and simulation objective • factorial design

Measurement Type(s)

energy

Technology Type(s)

machine learning

Factor Type(s)

machine learning • Energy Balance • temporal_interval • geographic location

Sample Characteristic(s)

Earth (Planet) • land • vegetation layer • climate system

Machine-accessible metadata file describing the reported data (ISA-Tab format)

Details

Title
The FLUXCOM ensemble of global land-atmosphere energy fluxes
Author
Jung, Martin 1 ; Koirala Sujan 1 ; Weber, Ulrich 1 ; Ichii Kazuhito 2   VIAFID ORCID Logo  ; Gans Fabian 1 ; Camps-Valls Gustau 3 ; Papale Dario 4   VIAFID ORCID Logo  ; Schwalm, Christopher 5 ; Tramontana Gianluca 4 ; Reichstein, Markus 1 

 Max Planck Institute for Biogeochemistry, Jena, Germany (GRID:grid.419500.9) (ISNI:0000 0004 0491 7318) 
 Chiba University, Center for Environmental Remote Sensing, Inage-ku, Japan (GRID:grid.136304.3) (ISNI:0000 0004 0370 1101); National Institute for Environmental Studies, Center for Global Environmental Research, Tsukuba, Japan (GRID:grid.140139.e) (ISNI:0000 0001 0746 5933) 
 2. 46980 Paterna, Universitat de València, Image Processing Laboratory (IPL), C/Catedrático José Beltrán, València, Spain (GRID:grid.5338.d) (ISNI:0000 0001 2173 938X) 
 University of Tuscia DIBAF, Via C. de Lellis snc, Viterbo, Italy (GRID:grid.12597.38) (ISNI:0000 0001 2298 9743) 
 Woods Hole Research Center, Falmouth, USA (GRID:grid.251079.8) (ISNI:0000 0001 2185 0926) 
Publication year
2019
Publication date
2019
Publisher
Nature Publishing Group
e-ISSN
20524463
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2230626861
Copyright
© The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.