It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
First-principles calculations based on density functional theory (DFT) are used to investigate the electronic structures and topological phase transition of arsenene under tensile and compressive strains. Buckling in arsenene strongly depends on compressive/tensile strain. The phonons band structures reveal that arsenene is dynamically stable up to 18% tensile strain and the frequency gap between the optical and acoustic branches decreases with strain. The electronic band structures show the direct bandgap decreases with tensile strain and then closes at 13% strain followed by band inversion. With spin-orbit coupling (SOC), the 14% strain-assisted topological insulator phase of arsenene is mainly governed by the p-orbitals. The SOC calculated bandgap is about 43 meV. No imaginary frequency in the phonons is observed in the topological phase of arsenene. The dynamically stable topological phase is accessed through Z2 topological invariant ν using the analysis of the parity of the wave functions at the time-reversal invariant momentum points. The calculated ν is shown to be 1, implying that arsenene is a topological insulator which can be a candidate material for nanoelectronic devices.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Quaid-i-Azam University, Department of Physics, Islamabad, Pakistan (GRID:grid.412621.2) (ISNI:0000 0001 2215 1297)
2 Universidad de Oviedo, Departamento de Física, Oviedo, Spain (GRID:grid.10863.3c) (ISNI:0000 0001 2164 6351); Nanomaterials and Nanotechnology Research Center (CINN), CSIC - Universidad de Oviedo, El Entrego, Spain (GRID:grid.10863.3c) (ISNI:0000 0001 2164 6351)