Full text

Turn on search term navigation

© 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A recommendation system can recommend items of interest to users. However, due to the scarcity of user rating data and the similarity of single ratings, the accuracy of traditional collaborative filtering algorithms (CF) is limited. Compared with user rating data, the user’s behavior log is easier to obtain and contains a large amount of implicit feedback information, such as the purchase behavior, comparison behavior, and sequences of items (item-sequences). In this paper, we proposed a personalized recommendation algorithm based on a user’s implicit feedback (BUIF). BUIF considers not only the user’s purchase behavior but also the user’s comparison behavior and item-sequences. We extracted the purchase behavior, comparison behavior, and item-sequences from the user’s behavior log; calculated the user’s similarity by purchase behavior and comparison behavior; and extended word-embedding to item-embedding to obtain the item’s similarity. Based on the above method, we built a secondary reordering model to generate the recommendation results for users. The results of the experiment on the JData dataset show that our algorithm shows better improvement in regard to recommendation accuracy over other CF algorithms.

Details

Title
A Personalized Recommendation Algorithm Based on the User’s Implicit Feedback in E-Commerce
Author
Wang, Bo; Ye, Feiyue; Xu, Jialu
Publication year
2018
Publication date
Dec 2018
Publisher
MDPI AG
e-ISSN
19995903
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2231476614
Copyright
© 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.