Content area

Abstract

The concept of Internet of Things (IoT) has led to the development of many complex and critical systems such as smart emergency management systems. IoT-enabled applications typically depend on a communication network for transmitting large volumes of data in unpredictable and changing environments. These networks are prone to congestion when there is a burst in demand, e.g., as an emergency situation is unfolding, and therefore rely on configurable software-defined networks (SDN). In this paper, we propose a dynamic adaptive SDN configuration approach for IoT systems. The approach enables resolving congestion in real time while minimizing network utilization, data transmission delays and adaptation costs. Our approach builds on existing work in dynamic adaptive search-based software engineering (SBSE) to reconfigure an SDN while simultaneously ensuring multiple quality of service criteria. We evaluate our approach on an industrial national emergency management system, which is aimed at detecting disasters and emergencies, and facilitating recovery and rescue operations by providing first responders with a reliable communication infrastructure. Our results indicate that (1) our approach is able to efficiently and effectively adapt an SDN to dynamically resolve congestion, and (2) compared to two baseline data forwarding algorithms that are static and non-adaptive, our approach increases data transmission rate by a factor of at least 3 and decreases data loss by at least 70%.

Details

1009240
Identifier / keyword
Title
Dynamic Adaptation of Software-defined Networks for IoT Systems: A Search-based Approach
Publication title
arXiv.org; Ithaca
Publication year
2020
Publication date
May 15, 2020
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2020-05-19
Milestone dates
2019-05-29 (Submission v1); 2020-05-15 (Submission v2)
Publication history
 
 
   First posting date
19 May 2020
ProQuest document ID
2232976536
Document URL
https://www.proquest.com/working-papers/dynamic-adaptation-software-defined-networks-iot/docview/2232976536/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2021-04-27
Database
ProQuest One Academic