This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
The Human Microbiome Project revealed that bacterial cells account for ~3% of total human body weight and are at an equal level in number to human somatic cells. While the bacterial communities in the human body contribute to health, their imbalance predisposes to a wide variety of diseases [1].
Lactobacillus species are classically known to dominate the vaginal cavity in premenopausal women [2]. Vaginal Lactobacilli play a role in the maintenance and homeostasis of the local microbial milieu by dropping pH through production of lactic acid. Meanwhile, the human uterine cavity has been long believed to be germfree. Recent studies, however, proved the presence of a microbiota in the uterine cavity, which is also characterized by Lactobacillus-dominant composition [3–5]. Moreover, it was demonstrated that the status of the Lactobacillus-dominant (90% or more) microbiota in the endometrial fluid (EF) was favorable for embryo implantation in the subsequent in vitro fertilization-embryo transfer (IVF-ET) treatment in infertile women. On the contrary, non-Lactobacillus-dominant microbiota is associated with a poor reproductive outcome including implantation failure and miscarriage [6], supporting the idea that endometrial microbial composition is a key determinant for a successful embryo implantation process.
Repeated implantation failure (RIF) is an infertile condition recognized as serial failed conception following three or more transfer cycles with good-quality embryos [7]. RIF occurs in 15-20% of infertile couples undergoing an IVF-ET program [8]. RIF potentially originates in aberrant embryonic factors (such as chromosomal abnormalities, mitochondrial DNA quantity, and oxidative stress) [9–12], impaired endometrial receptivity (such as hydrosalpinx, endometrial polyps, distorted uterine cavity, and chronic endometritis (CE)) [13–16], and systemic factors (such as thrombophilic and immunological factors) [17, 18]. Despite the accumulating evidence that Lactobacillus species are essential for the integrity of both the vaginal and the uterine cavity environments, the relationship between the vaginal secretions (VS) microbiota and the EF counterpart within the same infertile individuals remains largely unknown. Using next-generation sequencing, we aimed to compare the diversity of the microbiota in the paired EF and VS samples and characterize their dysbiosis in patients with a history of RIF.
2. Materials and Methods
2.1. Subjects
This was a preliminary analysis of an ongoing case-control study, which was approved by the Ethical Committee of the Institutional Review Board (Approval Number 2017-02) and registered on the University Hospital Medical Information Network-Clinical Trial Registration, Japan (UMIN000029449) on the 6th of October 2017. Under a given written informed consent, infertile patients with a history of RIF (RIF group,
2.2. Sample Collection
Endometrial biopsy samples were obtained in the proliferative phase (on days 6-12) of the menstrual cycle using a 3 mm width curette (Atom Medical, Tokyo, Japan). On days 6-8 after luteinizing hormone surge in the natural cycle, or hCG trigger in the oocyte-pickup cycle, or on day 5 following initiation of luteal support in the hormone replacement cycle, the paired EF and VS samples were obtained carefully avoiding contamination. In brief, the perineum was cleansed twice using sterilized cotton balls soaked in benzalkonium chloride solution. A bivalve speculum was inserted slowly into the vaginal cavity to visualize the uterine cervix sufficiently. The VS samples were obtained from the vaginal mucosa from all directions using an OMNIgene accessory swab (DNA Genotek Inc., Ottawa, ON, Canada) and solubilized into a collection tube containing stabilizing liquid (DNA Genotek Inc.). After removing the mucous, the vaginal cavity and cervix were cleaned twice using sterilized cotton balls soaked in benzalkonium chloride solution. A MedGyn Pipette IV (MedGyn Products Inc., Addison, IL, USA) was used for EF sample collection. Avoiding contact between the speculator and vaginal wall, a pipette was inserted slowly from the cervical os into the uterine cavity until it reached the fundus uteri. The EF samples were then carefully aspirated and soaked into another collection tube.
2.3. Histopathologic/Immunohistochemical Examinations for CE
Endometrial biopsy samples were fixed overnight in 4% paraformaldehyde (in phosphate buffer, pH 7.3) and embedded in paraffin. The sections (4 μm thickness) on slide glasses were dewaxed in limonene (Falma Inc., Tokyo, Japan), rehydrated in a graded series of ethanol (in phosphate-buffered saline, pH 7.4), and subjected to microwave pretreatment in citrate buffer solution (pH 6.0) for 5 minutes for antigen retrieval and immersion in 3% hydrogen peroxide for 5 minutes for endogenous peroxidase activity blocking. After being washed, the sections were soaked in 10% fetal calf serum (SAFC Biosciences, Lenexa, KS, USA) for 10 minutes to minimize nonspecific antibody binding and incubated with the ready-to-use mouse monoclonal IgG antibody against human CD138 (a plasmacyte marker, B-A38; Nichirei, Tokyo, Japan) or control mouse IgG. After being washed three times, the immunoreactivity was developed using a LSAB kit (Dako, Kyoto, Japan). Following hematoxylin counterstaining, the sections were observed by an experienced gynecologic pathologist under a light microscope (400x magnification). Stromal CD138+ cells with a nucleic heterochromatin pattern were enumerated in 20 or more high-power fields. The endometrial stromal plasmacyte density index was calculated as the sum of the stromal CD138+ cell counts divided by the number of the high-power fields evaluated. CE was diagnosed as 0.25 or more ESPDI, as previously described [21].
2.4. DNA Extraction and Sequencing
Both the EF and VS samples were treated with proteinase K (Beckman Coulter Inc., Brea, CA, USA) containing 100 mg/mL lysozyme solution (Sigma-Aldrich, Darmstadt, Germany) and 100 mg/mL RNase A (Sigma-Aldrich). The genomic DNA was extracted using an Agencourt Genfind v2 Blood & Serum DNA Isolation Kit (Beckman Coulter Inc.). The double-stranded DNA concentration was quantified fluorometrically with a Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific Inc., Waltham, MA, USA). The variable region 4 (V4) hypervariable region of the bacterial 16S rRNA gene was amplified from the specimen DNA by using a modified primer pair, 515f (5
Using EA-Utils fastq-join [23], a median 291-base pair merged sequence length was obtained. The quality control of the merged sequence was performed using USEARCH v10.0.240 [24] to remove PhiX reads, truncate primer-binding sequences, and discard sequences with <100 bp length and
2.5. Statistics
α-Diversity including the Shannon index, Chao1 richness, and observed species were calculated at the 1,000-th sequence in QIIME. The unweighted and weighted UniFrac distances were used to inspect the phylogenetic-based β-diversity and principal coordinate analysis plot based on rarified sequences for 1,000 [31]. The plots of α- and β-diversity were generated in QIIME, and β-diversity between the groups was compared using the permutational multivariate analysis of variance (PERMANOVA) test. Pearson’s correlation analysis was applied for comparison between the EF and the VS microbiota within the same individual. Fisher’s exact test was conducted to compare taxon-relative abundances between the control and the RIF group. A
3. Results
3.1. Characteristics of Infertile Patients
The demographics of the infertile patients enrolled were summarized in Table 1. All the patients were from the Japanese population. There were no cigarette smokers and obese women (
Table 1
Demographics of infertile patients with the RIF and control groups.
RIF group ( |
Control group ( | |
---|---|---|
Age (years) ( |
||
Body mass index (kg/m2) ( |
||
Gravidity (median (range)) | 0 (0-4) | 0 (0-3) |
Parity (median (range)) | 0 (0-1) | 0 (0-1) |
Infertility diagnosisa | ||
Male factor | 8 (28.6%) | 6 (33.3%) |
Polycystic ovarian syndrome | 9 (32.1%) | 4 (22.2%) |
Endometriosis | 5 (17.9%) | 4 (22.2%) |
Tubal factor | 4 (14.3%) | 5 (27.8%) |
Unexplained | 9 (32.1%) | 3 (16.7 %) |
Diminished ovarian reserve | 1 (3.6%) | 0 (0%) |
Controlled ovarian stimulation protocolb | ||
Short GnRH agonist cycle | 31 (76.1%) | — |
Long GnRH agonist cycle | 5 (0.7%) | — |
Ultralong GnRH agonist cycle | 1 (0%) | — |
Flexible GnRH antagonist cycle | 41 (27.5%) | — |
Mild stimulation cycle | 8 (0.7%) | — |
Natural cycle | 2 (0%) | — |
Past embryo transfer history ( | ||
Number of cycles | — | |
Number of embryos transferred | — | |
Number of morphologically good embryos transferred | — | |
Number of assisted hatching use | — | |
Number of hyaluronan-rich medium use | — |
Footnotes: aTotals are not 100 percent due to some patients having more than one diagnosis. bTotals are not 100 percent due to some patients undergoing more than one controlled ovarian stimulation/oocyte-pickup cycle. Abbreviations: RIF: repeated implantation failure; SD: standard deviation; GnRH: gonadotropin-releasing hormone.
3.2. Sequencing Result of EF and VS Samples
The paired EF and VS samples were obtained from the RIF group (
3.3. Comparison of EF versus VS Microbiota in Infertile Patients
Both the EF and the VS microbiota were highly correlated within the same infertile individual (average Pearson correlation coefficient for all subjects,
[figures omitted; refer to PDF]
[figures omitted; refer to PDF]
3.4. Comparison of EF and VS Microbiota between the RIF Group and the Control Group
The Shannon index of the EF microbiota in the RIF group (
[figures omitted; refer to PDF]
[figures omitted; refer to PDF]
3.5. Comparison of Bacterial Species in EF and VS Microbiota between the RIF Group and the Control Group
Lactobacillus-dominated EF microbiota, defined by >90% Lactobacillus genus status, was observed at a higher rate in the RIF group (64.3%, 18/28) than in the control group (38.9%, 7/18), although the difference did not reach a significant level (
[figures omitted; refer to PDF]
4. Discussion
Several investigators evaluated the bacterial communities in the endometrium and vagina using microbiota in infertile women with various causes [4, 6, 32–37]. To our best knowledge, this is the first study investigating the microbiota in the paired EF and VS samples in infertile patients with a history of RIF.
We demonstrate that the bacterial species in EF and VS are similar within the same individual. However, the diversity measurements such as the Shannon index, observed species, and Chao1 richness indicate that EF has a higher α-diversity than VS. This finding was supported by the analysis of the UniFrac distance, which demonstrated that the bacterial communities were fairly different between EF and VS. Although the possible impact of the endometrial biopsy procedure on the subsequent EF/VS sample status cannot be fully denied, we found reassuring results that there was no endometrial thinning or hemorrhage on the day of the EF/VS aspiration.
Interestingly, Burkholderia was not detectable in infertile women undergoing the first IVF-ET attempt but in a quarter of those with a history of RIF. Burkholderia is a genus of Proteobacteria, of which members include Burkholderia pseudomallei, a microorganism responsible for melioidosis [38], and Burkholderia cepacia, a pathogen causing serious pulmonary infections in patients with cystic fibrosis [39]. Burkholderia is usually resistant to multiple antibiotics [40]. The literature on this bacterium in the human female reproductive tract is scant. While some studies demonstrated that Burkholderia species are the common environmental contaminants which are frequently detectable in the uterine cavity of levonorgestrel intrauterine contraceptive system users [41], a case report suggests that Burkholderia may be one of the potential pathogens causing tuboovarian abscess [42]. The impact of Burkholderia on endometrial receptivity awaits further study.
The human endometrium is regulated throughout the menstrual cycle under the influence of ovarian steroids. Previous reports found that the endometrial microbiota profiles were stable across the menstrual cycle, between the menstrual cycles, and during the shift from the prereceptive phase (LH+2) to the receptive phase (LH+7) in most women. Some fluctuation, however, was seen in the acquisition of the endometrial receptivity in a fraction (4 of 22) of the subjects [6, 33]. The strength of our study is that we fixed the endometrial sampling period to the window of implantation (on days 6-8 after natural luteinizing hormone surge or hCG trigger or on day 5 following initiation of luteal support in the hormone replacement cycle). While the proportion of the pathogens was at a similar level between the paired EF and VS samples, there was a marked variance between the individuals. One potential confounding factor for this variance is inclusion of three different types of the cycles (natural, hCG-triggered, and hormone replacement cycles).
The limitation of this research is that the study design is cross-sectional. Given that the control group (infertile patients undergoing the first IVF-ET attempt) may include some prospective RIF cohort, longitudinal investigations are required. A potential bias is the contamination of the endocervical secretions and VS in the process of EF sampling [3, 4], although the EF microbiota was not suspected to be brought from the VS microbiota as some differences in the bacterial community were noted between the EF and VS samples within the same individuals. An association between CE and EF/VS microbiota is anticipated in infertile women with RIF, but we were unable to find it in this small sample size. Larger studies are required to evaluate the relationship between the female reproductive tract microbiota and CE.
5. Conclusions
To the best of our knowledge, this is the first study investigating the microbiota in the paired EF and VS samples in infertile women with a history of RIF, along with those undergoing the first IVF-ET attempt. This work will facilitate the understanding of the microbial etiology in the female reproductive tract of the infertile patients with RIF.
Disclosure
This work was partly presented at the 74th American Society for Reproductive Medicine Annual Meeting, Denver, Colorado, USA.
Conflicts of Interest
There are no conflicts of interest to declare regarding the publication of this article.
Authors’ Contributions
Kotaro Kitaya and Yoko Nagai equally contributed to the study.
[1] P. J. Turnbaugh, R. E. Ley, M. Hamady, C. M. Fraser-Liggett, R. Knight, J. I. Gordon, "The Human Microbiome Project," Nature, vol. 449 no. 7164, pp. 804-810, DOI: 10.1038/nature06244, 2007.
[2] J. Ravel, P. Gajer, Z. Abdo, G. M. Schneider, S. S. K. Koenig, S. L. McCulle, S. Karlebach, R. Gorle, J. Russell, C. O. Tacket, R. M. Brotman, C. C. Davis, K. Ault, L. Peralta, L. J. Forney, "Vaginal microbiome of reproductive-age women," Proceedings of the National Academy of Sciences of the United States of America, vol. 108, pp. 4680-4687, DOI: 10.1073/pnas.1002611107, 2011.
[3] C. M. Mitchell, A. Haick, E. Nkwopara, R. Garcia, M. Rendi, K. Agnew, D. N. Fredricks, D. Eschenbach, "Colonization of the upper genital tract by vaginal bacterial species in nonpregnant women," American Journal of Obstetrics & Gynecology, vol. 212 no. 5, pp. 611.e1-611.e9, DOI: 10.1016/j.ajog.2014.11.043, 2015.
[4] J. M. Franasiak, M. D. Werner, C. R. Juneau, X. Tao, J. Landis, Y. Zhan, N. R. Treff, R. T. Scott, "Endometrial microbiome at the time of embryo transfer: next-generation sequencing of the 16S ribosomal subunit," Journal of Assisted Reproduction and Genetics, vol. 33 no. 1, pp. 129-136, DOI: 10.1007/s10815-015-0614-z, 2016.
[5] C. Chen, X. Song, W. Wei, H. Zhong, J. Dai, Z. Lan, F. Li, X. Yu, Q. Feng, Z. Wang, H. Xie, X. Chen, C. Zeng, B. Wen, L. Zeng, H. Du, H. Tang, C. Xu, Y. Xia, H. Xia, H. Yang, J. Wang, J. Wang, L. Madsen, S. Brix, K. Kristiansen, X. Xu, J. Li, R. Wu, H. Jia, "The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases," Nature Communications, vol. 8 no. 1,DOI: 10.1038/s41467-017-00901-0, 2017.
[6] I. Moreno, F. M. Codoñer, F. Vilella, D. Valbuena, J. F. Martinez-Blanch, J. Jimenez-Almazán, R. Alonso, P. Alamá, J. Remohí, A. Pellicer, D. Ramon, C. Simon, "Evidence that the endometrial microbiota has an effect on implantation success or failure," American Journal of Obstetrics & Gynecology, vol. 215 no. 6, pp. 684-703, DOI: 10.1016/j.ajog.2016.09.075, 2016.
[7] E. J. Margalioth, A. Ben-Chetrit, M. Gal, T. Eldar-Geva, "Investigation and treatment of repeated implantation failure following IVF-ET," Human Reproduction, vol. 21 no. 12, pp. 3036-3043, DOI: 10.1093/humrep/del305, 2006.
[8] C. Coughlan, W. Ledger, Q. Wang, F. Liu, A. Demirol, T. Gurgan, R. Cutting, K. Ong, H. Sallam, T. C. Li, "Recurrent implantation failure: definition and management," Reproductive Biomedicine Online, vol. 28 no. 1, pp. 14-38, DOI: 10.1016/j.rbmo.2013.08.011, 2014.
[9] A. Simon, N. Laufer, "Repeated implantation failure: clinical approach," Fertility and Sterility, vol. 97 no. 5, pp. 1039-1043, DOI: 10.1016/j.fertnstert.2012.03.010, 2012.
[10] J. D. Kort, R. C. McCoy, Z. Demko, R. B. Lathi, "Are blastocyst aneuploidy rates different between fertile and infertile populations?," Journal of Assisted Reproduction and Genetics, vol. 35 no. 3, pp. 403-408, DOI: 10.1007/s10815-017-1060-x, 2018.
[11] E. H. Ruder, T. J. Hartman, J. Blumberg, M. B. Goldman, "Oxidative stress and antioxidants: exposure and impact on female fertility," Human Reproduction Update, vol. 14 no. 4, pp. 345-357, DOI: 10.1093/humupd/dmn011, 2008.
[12] D. Wells, "Mitochondrial DNA quantity as a biomarker for blastocyst implantation potential," Fertility and Sterility, vol. 108 no. 5, pp. 742-747, DOI: 10.1016/j.fertnstert.2017.10.007, 2017.
[13] B. Xu, Q. Zhang, J. Zhao, Y. Wang, D. Xu, Y. Li, "Pregnancy outcome of in vitro fertilization after Essure and laparoscopic management of hydrosalpinx: a systematic review and meta-analysis," Fertility and Sterility, vol. 108 no. 1, pp. 84-95.e5, DOI: 10.1016/j.fertnstert.2017.05.005, 2017.
[14] A. Di Spiezio Sardo, C. Di Carlo, S. Minozzi, M. Spinelli, V. Pistotti, C. Alviggi, G. De Placido, C. Nappi, G. Bifulco, "Efficacy of hysteroscopy in improving reproductive outcomes of infertile couples: a systematic review and meta-analysis," Human Reproduction Update, vol. 22 no. 4, pp. 479-496, DOI: 10.1093/humupd/dmw008, 2016.
[15] E. A. Pritts, W. H. Parker, D. L. Olive, "Fibroids and infertility: an updated systematic review of the evidence," Fertility and Sterility, vol. 91 no. 4, pp. 1215-1223, DOI: 10.1016/j.fertnstert.2008.01.051, 2009.
[16] K. Kitaya, T. Takeuchi, S. Mizuta, H. Matsubayashi, T. Ishikawa, "Endometritis: new time, new concepts," Fertility and Sterility, vol. 110 no. 3, pp. 344-350, DOI: 10.1016/j.fertnstert.2018.04.012, 2018.
[17] H. M. Fatemi, B. Popovic-Todorovic, "Implantation in assisted reproduction: a look at endometrial receptivity," Reproductive Biomedicine Online, vol. 27 no. 5, pp. 530-538, DOI: 10.1016/j.rbmo.2013.05.018, 2013.
[18] P. Ivanov, T. Tsvyatkovska, E. Konova, R. Komsa-Penkova, "Inherited thrombophilia and IVF failure: the impact of coagulation disorders on implantation process," American Journal of Reproductive Immunology, vol. 68 no. 3, pp. 189-198, DOI: 10.1111/j.1600-0897.2012.01156.x, 2012.
[19] L. L. Veeck, Preembryo Grading, 1991.
[20] D. K. Gardner, M. Lane, J. Stevens, T. Schlenker, W. B. Schoolcraft, "Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer," Fertility and Sterility, vol. 73 no. 6, pp. 1155-1158, DOI: 10.1016/S0015-0282(00)00518-5, 2000.
[21] K. Kitaya, H. Matsubayashi, Y. Takaya, R. Nishiyama, K. Yamaguchi, T. Takeuchi, T. Ishikawa, "Live birth rate following oral antibiotic treatment for chronic endometritis in infertile women with repeated implantation failure," American Journal of Reproductive Immunology, vol. 78 no. 5, article e12719,DOI: 10.1111/aji.12719, 2017.
[22] W. Walters, E. R. Hyde, D. Berg-Lyons, "Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys," mSystems, vol. 1 no. 1, pp. e00009-e00015, DOI: 10.1128/msystems.00009-15, 2015.
[23] E. Aronesty, "Comparison of sequencing utility programs," The Open Bioinformatics Journal, vol. 7 no. 1,DOI: 10.2174/1875036201307010001, 2013.
[24] R. C. Edgar, B. J. Haas, J. C. Clemente, C. Quince, R. Knight, "UCHIME improves sensitivity and speed of chimera detection," Bioinformatics, vol. 27 no. 16, pp. 2194-2200, DOI: 10.1093/bioinformatics/btr381, 2011.
[25] J. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, N. Fierer, A. G. Peña, J. K. Goodrich, J. I. Gordon, G. A. Huttley, S. T. Kelley, D. Knights, J. E. Koenig, R. E. Ley, C. A. Lozupone, D. McDonald, B. D. Muegge, M. Pirrung, J. Reeder, J. R. Sevinsky, P. J. Turnbaugh, W. A. Walters, J. Widmann, T. Yatsunenko, J. Zaneveld, R. Knight, "QIIME allows analysis of high-throughput community sequencing data," Nature Methods, vol. 7 no. 5, pp. 335-336, DOI: 10.1038/nmeth.f.303, 2010.
[26] Q. Wang, G. M. Garrity, J. M. Tiedje, J. R. Cole, "Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy," Applied and Environmental Microbiology, vol. 73 no. 16, pp. 5261-5267, DOI: 10.1128/AEM.00062-07, 2007.
[27] D. McDonald, M. N. Price, J. Goodrich, E. P. Nawrocki, T. Z. DeSantis, A. Probst, G. L. Andersen, R. Knight, P. Hugenholtz, "An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea," The ISME Journal, vol. 6 no. 3, pp. 610-618, DOI: 10.1038/ismej.2011.139, 2012.
[28] S. J. Salter, M. J. Cox, E. M. Turek, S. T. Calus, W. O. Cookson, M. F. Moffatt, P. Turner, J. Parkhill, N. J. Loman, A. W. Walker, "Reagent and laboratory contamination can critically impact sequence-based microbiome analyses," BMC Biology, vol. 12 no. 1,DOI: 10.1186/s12915-014-0087-z, 2014.
[29] M. Laurence, C. Hatzis, D. E. Brash, "Common contaminants in next-generation sequencing that hinder discovery of low-abundance microbes," PLoS One, vol. 9 no. 5, article e97876,DOI: 10.1371/journal.pone.0097876, 2014.
[30] D. Urushiyama, W. Suda, E. Ohnishi, R. Araki, C. Kiyoshima, M. Kurakazu, A. Sanui, F. Yotsumoto, M. Murata, K. Nabeshima, S.’. Yasunaga, S. Saito, M. Nomiyama, M. Hattori, S. Miyamoto, K. Hata, "Microbiome profile of the amniotic fluid as a predictive biomarker of perinatal outcome," Scientific Reports, vol. 7 no. 1, article 12171,DOI: 10.1038/s41598-017-11699-8, 2017.
[31] C. Lozupone, R. Knight, "UniFrac: a new phylogenetic method for comparing microbial communities," Applied and Environmental Microbiology, vol. 71 no. 12, pp. 8228-8235, DOI: 10.1128/AEM.71.12.8228-8235.2005, 2005.
[32] I. Moreno, C. Simon, "Relevance of assessing the uterine microbiota in infertility," Fertility and Sterility, vol. 110 no. 3, pp. 337-343, DOI: 10.1016/j.fertnstert.2018.04.041, 2018.
[33] K. Kyono, T. Hashimoto, Y. Nagai, Y. Sakuraba, "Analysis of endometrial microbiota by 16S ribosomal RNA gene sequencing among infertile patients: a single-center pilot study," Reproductive Medicine and Biology, vol. 17 no. 3, pp. 297-306, DOI: 10.1002/rmb2.12105, 2018.
[34] K. Kyono, T. Hashimoto, S. Kikuchi, Y. Nagai, Y. Sakuraba, "A pilot study and case reports on endometrial microbiota and pregnancy outcome: an analysis using 16S rRNA gene sequencing among IVF patients, and trial therapeutic intervention for dysbiotic endometrium," Reproductive Medicine and Biology, vol. 18 no. 1, pp. 72-82, DOI: 10.1002/rmb2.12250, 2019.
[35] B. A. Wee, M. Thomas, E. L. Sweeney, F. D. Frentiu, M. Samios, J. Ravel, P. Gajer, G. Myers, P. Timms, J. A. Allan, W. M. Huston, "A retrospective pilot study to determine whether the reproductive tract microbiota differs between women with a history of infertility and fertile women," The Australian and New Zealand Journal of Obstetrics and Gynaecology, vol. 58 no. 3, pp. 341-348, DOI: 10.1111/ajo.12754, 2018.
[36] J. M. Baker, D. M. Chase, M. M. Herbst-Kralovetz, "Uterine microbiota: residents, tourists, or invaders?," Frontiers in Immunology, vol. 9,DOI: 10.3389/fimmu.2018.00208, 2018.
[37] T. Haahr, P. Humaidan, H. O. Elbaek, B. Alsbjerg, R. J. Laursen, K. Rygaard, T. B. Johannesen, P. S. Andersen, K. L. Ng, J. S. Jensen, "Vaginal microbiota and in vitro fertilization outcomes: development of a simple diagnostic tool to predict patients at risk of a poor reproductive outcome," The Journal of Infectious Diseases, vol. 219 no. 11, pp. 1809-1817, DOI: 10.1093/infdis/jiy744, 2019.
[38] W. J. Wiersinga, T. van der Poll, N. J. White, N. P. Day, S. J. Peacock, "Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei," Nature Reviews Microbiology, vol. 4 no. 4, pp. 272-282, DOI: 10.1038/nrmicro1385, 2006.
[39] K. H. Regan, J. Bhatt, "Eradication therapy for Burkholderia cepacia complex in people with cystic fibrosis," Cochrane Database of Systematic Reviews, vol. 11, article CD009876,DOI: 10.1002/14651858.cd009876.pub4, 2016.
[40] K. A. Rhodes, H. P. Schweizer, "Antibiotic resistance in Burkholderia species," Drug Resistance Updates, vol. 28, pp. 82-90, DOI: 10.1016/j.drup.2016.07.003, 2016.
[41] J. C. Jacobson, D. K. Turok, A. I. Dermish, I. E. Nygaard, M. L. Settles, "Vaginal microbiome changes with levonorgestrel intrauterine system placement," Contraception, vol. 90 no. 2, pp. 130-135, DOI: 10.1016/j.contraception.2014.04.006, 2014.
[42] P. Nernsai, A. Sophonsritsuk, S. Lertvikool, A. Jinawath, M. N. Chitasombat, "A case report of tubo-ovarian abscess caused by Burkholderia pseudomallei," BMC Infectious Diseases, vol. 18 no. 1,DOI: 10.1186/s12879-018-2986-z, 2018.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2019 Kotaro Kitaya et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/
Abstract
Studies suggest that persisting intrauterine bacterial infectious conditions such as chronic endometritis potentially impair the embryo implantation process. The microbial environment in the female reproductive tract, however, remains largely undetermined in infertile patients with a history of repeated implantation failure (RIF). Using next-generation sequencing, we aimed to characterize the microbiota in the endometrial fluid (EF) and vaginal secretions (VS) in women with RIF. Twenty-eight infertile women with a history of RIF and eighteen infertile women undergoing the first in vitro fertilization-embryo transfer attempt (the control group) were enrolled in the study. On days 6-8 in the luteal phase of the natural, oocyte-pickup, or hormone replacement cycle, the paired EF and VS samples were obtained separately. Extracted genomic DNA was pyrosequenced for the V4 region of 16S ribosomal RNA using a next-generation sequencer. The EF microbiota had higher α-diversity and broader bacterial species than the VS microbiota both in the RIF and control groups. The analysis of the UniFrac distance matrices between EF and VS also revealed significantly different clustering. Additionally, the EF microbiota, but not the VS microbiota, showed significant variation in community composition between the RIF group and the control group. Burkholderia species were not detected in the EF microbiota of any samples in the control group but were detectable in a quarter of the RIF group. To our best knowledge, this is the first study investigating the microbiota in the paired EF and VS samples in infertile women with RIF.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Reproduction Clinic Osaka, Grand Front Osaka Tower A 15F, 4-20 Oofuka-cho, Kita-ku, Osaka, 530-0011, Japan
2 Varinos Inc., Dai 2 Gotanda Fujikoshi Bldg. 6F, 5-23-1 Higashigotanda, Shinagawa-ku, Tokyo, 141-0022, Japan
3 Reproduction Clinic Osaka, Grand Front Osaka Tower A 15F, 4-20 Oofuka-cho, Kita-ku, Osaka, 530-0011, Japan; Reproduction Clinic Tokyo, Shiodome City Center 3F, 1-5-2 Higashi-Shinbashi, Minato-ku, Tokyo, 105-7103, Japan