It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The overestimation of volume scattering (OVS) is an intrinsic drawback in model-based polarimetric synthetic aperture radar (PolSAR) target decomposition. It severely impacts the accuracy measurement of scattering power and leads to scattering mechanism ambiguity. In this paper, a hierarchical extended general four-component scattering power decomposition method (G4U) is presented. The conventional G4U is first proposed by Singh et al. and it has advantages in full use of information and volume scattering characterization. However, the OVS still exists in the G4U and it causes a scattering mechanism ambiguity in some oriented urban areas. In the proposed method, matrix rotations by the orientation angle and the helix angle are applied. Afterwards, the transformed coherency matrix is applied to the four-component decomposition scheme with two refined models. Moreover, the branch condition applied in the G4U is substituted by the ratio of correlation coefficient (RCC), which is used as a criterion for hierarchically implementing the decomposition. The performance of this approach is demonstrated and evaluated with the Airborne Synthetic Aperture Radar (AIRSAR), Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR), Radarsat-2, and the Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) fully polarimetric data over different test sites. Comparison studies are carried out and demonstrated that the proposed method exhibits promising improvements in the OVS and scattering mechanism characterization.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer