Abstract

Global stakeholders including the World Health Organization rely on predictive models for developing strategies and setting targets for tuberculosis care and control programs. Failure to account for variation in individual risk leads to substantial biases that impair data interpretation and policy decisions. Anticipated impediments to estimating heterogeneity for each parameter are discouraging despite considerable technical progress in recent years. Here we identify acquisition of infection as the single process where heterogeneity most fundamentally impacts model outputs, due to selection imposed by dynamic forces of infection. We introduce concrete metrics of risk inequality, demonstrate their utility in mathematical models, and pack the information into a risk inequality coefficient (RIC) which can be calculated and reported by national tuberculosis programs for use in policy development and modeling.

Failure to account for heterogeneity in TB risk can mislead model-based evaluation of proposed interventions. Here, the authors introduce a metric to estimate the distribution of risk in populations from routinely collected data and find that variation in infection acquisition is the most impactful.

Details

Title
Introducing risk inequality metrics in tuberculosis policy development
Author
Gomes M Gabriela M 1   VIAFID ORCID Logo  ; Oliveira, Juliane F 2   VIAFID ORCID Logo  ; Bertolde Adelmo 3 ; Diepreye, Ayabina 4 ; Nguyen, Tuan Anh 5 ; Maciel, Ethel L 6 ; Duarte, Raquel 7 ; Nguyen, Binh Hoa 8 ; Shete, Priya B 9 ; Lienhardt, Christian 10 

 Liverpool School of Tropical Medicine, Liverpool, United Kingdom (GRID:grid.48004.38) (ISNI:0000 0004 1936 9764); Universidade do Porto, CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Vairão, Portugal (GRID:grid.5808.5) (ISNI:0000 0001 1503 7226) 
 Universidade do Porto, CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Vairão, Portugal (GRID:grid.5808.5) (ISNI:0000 0001 1503 7226) 
 Universidade Federal do Espírito Santo, Departamento de Estatística, Vitória, Brazil (GRID:grid.412371.2) (ISNI:0000 0001 2167 4168) 
 Liverpool School of Tropical Medicine, Liverpool, United Kingdom (GRID:grid.48004.38) (ISNI:0000 0004 1936 9764) 
 National Lung Hospital, Hanoi, Vietnam (GRID:grid.48004.38) 
 Universidade Federal do Espírito Santo, Laboratório de Epidemiologia, Vitória, Brazil (GRID:grid.412371.2) (ISNI:0000 0001 2167 4168) 
 Universidade do Porto, Faculdade de Medicina, and EPIUnit, Instituto de Saúde Pública, Porto, Portugal (GRID:grid.5808.5) (ISNI:0000 0001 1503 7226) 
 National Lung Hospital, Hanoi, Vietnam (GRID:grid.5808.5) 
 University of California San Francisco, Division of Pulmonary and Critical Care Medicine, San Francisco, USA (GRID:grid.266102.1) (ISNI:0000 0001 2297 6811) 
10  Global TB Programme, World Health Organization, 1211 Geneva 27, Geneva, Switzerland (GRID:grid.3575.4) (ISNI:0000000121633745); Unité Mixte Internationale TransVIHMI (UMI 233 IRD – U1175 INSERM – Université de Montpellier), Institut de Recherche pour le Développement (IRD), Montpellier, France (GRID:grid.4399.7) (ISNI:0000000122879528) 
Publication year
2019
Publication date
2019
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2236155706
Copyright
© The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.