Full text

Turn on search term navigation

© 2019 Xu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

The plasminogen activation system plays a pivotal role in regulating tumorigenesis. In this work, we aim to identify key regulators of plasminogen activation associated with tumorigenesis and explore potential mechanisms in gastric cancer (GC).

Methods

Gene profiling datasets were extracted from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were screened for and obtained by the GEO2R tool. The Database for Annotation, Visualization and Integrated Discovery was used for GO and KEGG enrichment analysis. Gene set enrichment analysis (GSEA) was performed to verify molecular signatures and pathways among The Cancer Genome Atlas or GEO datasets. Correlations between SERPINE1 and markers of epithelial-to-mesenchymal transition (EMT) were analyzed using the GEPIA database and quantitative real-time PCR (qRT-PCR). Interactive networks of selected genes were built by STRING and Cytoscape software. Finally, selected genes were verified with the Kaplan–Meier (KM) plotter database.

Results

A total of 104 overlapped upregulated and 61 downregulated DEGs were obtained. Multiple GO and KEGG terms associated with the extracellular matrix were enriched among the DEGs. SERPINE1 was identified as the only regulator of angiogenesis and the plasminogen activator system among the DEGs. A high level of SERPINE1 was associated with a poor prognosis in GC. GSEA analysis showed a strong correlation between SERPINE1 and EMT, which was also confirmed with the GEPIA database and qRT-PCR validation. FN1, TIMP1, MMP2, and SPARC were correlated with SERPINE1.The KM plotter database showed that an overexpression of these genes correlated with a shorter survival time in GC patients.

Conclusions

In conclusion, SERPINE1 is a potent biomarker associated with EMT and a poor prognosis in GC. Furthermore, FN1, TIMP1, MMP2, and SPARC are correlated with SERPINE1 and may serve as therapeutic targets in reversing EMT in GC.

Details

Title
Global transcriptomic analysis identifies SERPINE1 as a prognostic biomarker associated with epithelial-to-mesenchymal transition in gastric cancer
Author
Xu, Bodong; Bai, Zhigang; Yin, Jie; Zhang, Zhongtao
Publication year
2019
Publication date
Jun 10, 2019
Publisher
PeerJ, Inc.
e-ISSN
21678359
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2237768884
Copyright
© 2019 Xu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.