Content area

Abstract

This paper presents an unsupervised segment-based method for robust voice activity detection (rVAD). The method consists of two passes of denoising followed by a voice activity detection (VAD) stage. In the first pass, high-energy segments in a speech signal are detected by using a posteriori signal-to-noise ratio (SNR) weighted energy difference and if no pitch is detected within a segment, the segment is considered as a high-energy noise segment and set to zero. In the second pass, the speech signal is denoised by a speech enhancement method, for which several methods are explored. Next, neighbouring frames with pitch are grouped together to form pitch segments, and based on speech statistics, the pitch segments are further extended from both ends in order to include both voiced and unvoiced sounds and likely non-speech parts as well. In the end, a posteriori SNR weighted energy difference is applied to the extended pitch segments of the denoised speech signal for detecting voice activity. We evaluate the VAD performance of the proposed method using two databases, RATS and Aurora-2, which contain a large variety of noise conditions. The rVAD method is further evaluated, in terms of speaker verification performance, on the RedDots 2016 challenge database and its noise-corrupted versions. Experiment results show that rVAD is compared favourably with a number of existing methods. In addition, we present a modified version of rVAD where computationally intensive pitch extraction is replaced by computationally efficient spectral flatness calculation. The modified version significantly reduces the computational complexity at the cost of moderately inferior VAD performance, which is an advantage when processing a large amount of data and running on low resource devices. The source code of rVAD is made publicly available.

Details

1009240
Title
rVAD: An Unsupervised Segment-Based Robust Voice Activity Detection Method
Publication title
arXiv.org; Ithaca
Publication year
2022
Publication date
Jan 11, 2022
Section
Computer Science; Electrical Engineering and Systems Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2022-01-12
Milestone dates
2019-06-09 (Submission v1); 2022-01-11 (Submission v2)
Publication history
 
 
   First posting date
12 Jan 2022
ProQuest document ID
2238246497
Document URL
https://www.proquest.com/working-papers/rvad-unsupervised-segment-based-robust-voice/docview/2238246497/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2022-01-13
Database
ProQuest One Academic