Abstract

The rise of the Internet of Things, autonomous navigation systems, and wearable devices created a growing need for ultra-compact, low-power, low-latency vision sensors that bridge the physical and digital worlds. Vision sensors capture vast amount of data that require swift processing for semantic scene understanding. However, most computer vision algorithms suffer from large power consumption and latency, necessitating the sacrifice of spatial resolution. Optical systems can potentially address these issues with large parallelism and spatial bandwidth for visual data processing. Particularly, free-space optical systems (encoders) can be easily adapted to conventional imaging systems. This paper details the current state of free-space optical encoders and discusses future opportunities for innovations. We also provide insights on where we can achieve optical advantages for computer vision tasks based on empirical evidences.

Details

Title
Free-space optical encoder for computer vision
Author
Choi, Minho 1 ; Majumdar, Arka 2 

 Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA (ROR: https://ror.org/00cvxb145) (GRID: grid.34477.33) (ISNI: 0000 0001 2298 6657) 
 Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA (ROR: https://ror.org/00cvxb145) (GRID: grid.34477.33) (ISNI: 0000 0001 2298 6657); Department of Physics, University of Washington, Seattle, WA, USA (ROR: https://ror.org/00cvxb145) (GRID: grid.34477.33) (ISNI: 0000 0001 2298 6657) 
Pages
36
Section
Review
Publication year
2025
Publication date
Dec 2025
Publisher
Nature Publishing Group
e-ISSN
2948216X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3245813485
Copyright
© The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.