It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Bessel beams have attracted considerable interest because of their unique non-diffractive, self-healing characteristics. Different approaches have been proposed to generate Bessel beams, such as using axicons, diffractive optical elements, composite holograms, or spatial light modulators. However, these approaches have suffered from limited numerical aperture, low efficiency, polarization-dependent properties, etc. Here, by utilizing dielectric Huygens metasurfaces as ultrathin, compact platforms by integrating the functionalities of Dammann gratings and axicons, we successfully demonstrate multiple Bessel beam generation with polarization-independent property. The number of two-dimensional arrays can be controlled flexibly, which can enhance information capacity with a total efficiency that can reach 66.36%. This method can have various applications, such as parallel laser fabrication, efficient optical tweezers, and optical communication.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer