It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Since 2008, avian influenza surveillance in poultry-related environments has been conducted annually in China. Samples have been collected from environments including live poultry markets, wild bird habitats, slaughterhouses, and poultry farms. Multiple subtypes of avian influenza virus have been identified based on environmental surveillance, and an H1N8 virus was isolated from the drinking water of a live poultry market.
Methods
Virus isolation was performed by inoculating influenza A-positive specimens into embryonated chicken eggs. Next-generation sequencing was used for whole-genome sequencing. A solid-phase binding assay was performed to test the virus receptor binding specificity. Trypsin dependence plaque formation assays and intravenous pathogenicity index tests were used to evaluate virus pathogenicity in vitro and in vivo, respectively. Different cell lines were chosen for comparison of virus replication capacity.
Results
According to the phylogenetic trees, the whole gene segments of the virus named A/Environment/Fujian/85144/2014(H1N8) were of Eurasian lineage. The HA, NA, PB1, and M genes showed the highest homology with those of H1N8 or H1N2 subtype viruses isolated from local domestic ducks, while the PB2, PA, NP and NS genes showed high similarity with the genes of H7N9 viruses detected in 2017 and 2018 in the same province. This virus presented an avian receptor binding preference. The plaque formation assay showed that it was a trypsin-dependent virus. The intravenous pathogenicity index (IVPI) in chickens was 0.02. The growth kinetics of the A/Environment/Fujian/85144/2014(H1N8) virus in different cell lines were similar to those of a human-origin virus, A/Brisbane/59/2007(H1N1), but lower than those of the control avian-origin and swine-origin viruses.
Conclusions
The H1N8 virus was identified in avian influenza-related environments in China for the first time and may have served as a gene carrier involved in the evolution of the H7N9 virus in poultry. This work further emphasizes the importance of avian influenza virus surveillance, especially in live poultry markets (LPMs). Active surveillance of avian influenza in LPMs is a major pillar supporting avian influenza control and response.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer