Full text

Turn on search term navigation

This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Taxonomic identification of biological materials can be achieved through DNA barcoding, where an unknown “barcode” sequence is compared to a reference database. In many disciplines, obtaining accurate taxonomic identifications can be imperative (e.g., evolutionary biology, food regulatory compliance, forensics). The Barcode of Life DataSystems (BOLD) and GenBank are the main public repositories of DNA barcode sequences. In this study, an assessment of the accuracy and reliability of sequences in these databases was performed. To achieve this, 1) curated reference materials for plants, macro-fungi and insects were obtained from national collections, 2) relevant barcode sequences (rbcL, matK, trnH-psbA, ITS and COI) from these reference samples were generated and used for searching against both databases, and 3) optimal search parameters were determined that ensure the best match to the known species in either database. While GenBank outperformed BOLD for species-level identification of insect taxa (53% and 35%, respectively), both databases performed comparably for plants and macro-fungi (~81% and ~57%, respectively). Results illustrated that using a multi-locus barcode approach increased identification success. This study outlines the utility of the BLAST search tool in GenBank and the BOLD identification engine for taxonomic identifications and identifies some precautions needed when using public sequence repositories in applied scientific disciplines.

Details

Title
Assessment of BOLD and GenBank – Their accuracy and reliability for the identification of biological materials
Author
Meiklejohn, Kelly A; Damaso, Natalie; Robertson, James M
First page
e0217084
Section
Research Article
Publication year
2019
Publication date
Jun 2019
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2243464363
Copyright
This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.