Content area

Abstract

Infrastructure-as-a-service (IaaS) Clouds concurrently accommodate diverse sets of user requests, requiring an efficient strategy for storing and retrieving virtual machine images (VMIs) at a large scale. The VMI storage management require dealing with multiple VMIs, typically in the magnitude of gigabytes, which entails VMI sprawl issues hindering the elastic resource management and provisioning. Nevertheless, existing techniques to facilitate VMI management overlook VMI semantics (i.e at the level of base image and software packages) with either restricted possibility to identify and extract reusable functionalities or with higher VMI publish and retrieval overheads. In this paper, we design, implement and evaluate Expelliarmus, a novel VMI management system that helps to minimize storage, publish and retrieval overheads. To achieve this goal, Expelliarmus incorporates three complementary features. First, it makes use of VMIs modelled as semantic graphs to expedite the similarity computation between multiple VMIs. Second, Expelliarmus provides a semantic aware VMI decomposition and base image selection to extract and store non-redundant base image and software packages. Third, Expelliarmus can also assemble VMIs based on the required software packages upon user request. We evaluate Expelliarmus through a representative set of synthetic Cloud VMIs on the real test-bed. Experimental results show that our semantic-centric approach is able to optimize repository size by 2.2-16 times compared to state-of-the-art systems (e.g. IBM's Mirage and Hemera) with significant VMI publish and slight retrieval performance improvement.

Details

1009240
Title
Semantics-aware Virtual Machine Image Management in IaaS Clouds
Publication title
arXiv.org; Ithaca
Publication year
2019
Publication date
Jul 29, 2019
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2019-07-30
Milestone dates
2019-06-21 (Submission v1); 2019-07-29 (Submission v2)
Publication history
 
 
   First posting date
30 Jul 2019
ProQuest document ID
2245972630
Document URL
https://www.proquest.com/working-papers/semantics-aware-virtual-machine-image-management/docview/2245972630/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2022-05-09
Database
ProQuest One Academic