It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Major nutrient management systems for rice-wheat cropping were compared for their potential to credit organic carbon (C) to the soil, its fractionation into active (very labile, VLc; labile, Lc) and passive (less labile, LLc; non-labile, NLc) pools, and crop yield responses. A ten-year long experiment was used to study effects of: (i) no inputs (Control, O), (ii) 100% inorganic fertilizers (F) compared to reduced fertilizers inputs (55%) supplemented with biomass incorporation from (iii) opportunity legume crop (Vigna radiata) (LE), (iv) green manure (Sesbania aculeata) (GM), (v) farmyard manure (FYM), (vi) wheat stubble (WS), and (vii) rice stubble (RS). Maximum C input to soil (as the percentage of C assimilated in the system) was in GM (36%) followed by RS (34%), WS (33%), LE (24%), and FYM (21%) compared to O (15%) and F (15%). Total C input to soil had a direct effect on soil C stock, soil C fractions (maximum in VLc and LLc), yet the responses in terms of biological yield were controlled by the quality of the biomass (C:N ratio, decomposition, etc.) incorporated. Legume-based biomass inputs accrued most benefits for soil C sequestration and biological productivity.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 ICAR-Central Soil Salinity Research Institute (CSSRI), Karnal, Haryana, India
2 CSSRI Regional Research Station, Canning Town, West Bengal, India
3 ICAR-Central Research Institute for Dryland Agriculture, Hyderabad, Telangana, India
4 Krishi Anusandhan Bhawan –II, Pusa, New Delhi, India