Abstract

Subject of Research. The paper presents the study of ammonium sulfate concentration effect on the content of impurities and the morphology of oxyhydrate powders and ceramic powders. Method. The synthesis of precursor powders was carried out by the method of reverse heterophase precipitation from chlorides. The method of energy dispersive analysis of the elemental composition was used to analyze the dynamics of changes in the concentration of chlorine and sulfur impurities in oxyhydrate powders and ceramic powders. The morphology of the experimental samples was evaluated according to scanning electron microscopy. Analysis of the agglomeration degree was performed using X-ray phase analysis methods and the BET gas adsorption method. Main Results. It was found that the usage of ammonium sulfate not only reduces the degree of agglomeration of ceramic powders by two orders of magnitude but also reduces the chlorine impurity concentration from 0.2 at. % to less than 0.01 at. %. In addition, the possibility of controlling the value of the specific surface area in the range of 1.5–15 m2/g by changing the concentration of ammonium sulfate was revealed. Practical Relevance. Applying an improved technique for the synthesis of ceramic powders, samples of optical ceramics were obtained with light transmission in the visible and near-IR range of more than 70% without taking into account the absorption bands of ytterbium.

Details

Title
AMMONIUM SULPHATE EFFECT ON CHARACTERISTICS OF YAG:Yb NANOPOWDERS AND OPTICAL CERAMICS
Author
Nikova, M S; Kravtsov, A A; Chikulina, I S; Malyavin, F F; Tarala, V A; Vakalov, D S; Kuleshov, D S; Tarala, L V; Evtushenko, E A; Lapin, V A
Pages
443–450
Section
MATERIAL SCIENCE AND NANOTECHNOLOGIES
Publication year
2019
Publication date
May/Jun 2019
Publisher
St. Petersburg National Research University of Information Technologies, Mechanics and Optics
ISSN
22261494
e-ISSN
25000373
Source type
Scholarly Journal
Language of publication
Russian
ProQuest document ID
2246880249
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.