Content area

Abstract

One of the fundamental assumptions of compressive sensing (CS) is that a signal can be reconstructed from a small number of samples by solving an optimization problem with the appropriate regularization term. Two standard regularization terms are the L1 norm and the total variation (TV) norm. We present a comparison of CS reconstruction results based on these two approaches in the context of chemical detection, and we demonstrate that optimization based on the L1 norm outperforms optimization based on the TV norm. Our comparison is driven by CS sampling, reconstruction, and chemical detection in two real-world datasets: the Physical Sciences Inc. Fabry-P\'{e}rot interferometer sensor multispectral dataset and the Johns Hopkins Applied Physics Lab FTIR-based longwave infrared sensor hyperspectral dataset. Both datasets contain the release of a chemical simulant such as glacial acetic acid, triethyl phosphate, and sulfur hexafluoride. For chemical detection we use the adaptive coherence estimator (ACE) and bulk coherence, and we propose algorithmic ACE thresholds to define the presence or absence of a chemical of interest in both un-compressed data cubes and reconstructed data cubes. The un-compressed data cubes provide an approximate ground truth. We demonstrate that optimization based on either the L1 norm or TV norm results in successful chemical detection at a compression rate of 90%, but we show that L1 optimization is preferable. We present quantitative comparisons of chemical detection on reconstructions from the two methods, with an emphasis on the number of pixels with an ACE value above the threshold.

Details

1009240
Title
Total variation vs L1 regularization: a comparison of compressive sensing optimization methods for chemical detection
Publication title
arXiv.org; Ithaca
Publication year
2019
Publication date
Jun 25, 2019
Section
Electrical Engineering and Systems Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2019-06-26
Milestone dates
2019-06-25 (Submission v1)
Publication history
 
 
   First posting date
26 Jun 2019
ProQuest document ID
2247256103
Document URL
https://www.proquest.com/working-papers/total-variation-vs-l1-regularization-comparison/docview/2247256103/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2023-02-24
Database
ProQuest One Academic