Full text

Turn on search term navigation

© 2019 Cole and Brewer. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In the era of Next-Generation Sequencing and shotgun proteomics, the sequences of animal toxigenic proteins are being generated at rates exceeding the pace of traditional means for empirical toxicity verification. To facilitate the automation of toxin identification from protein sequences, we trained Recurrent Neural Networks with Gated Recurrent Units on publicly available datasets. The resulting models are available via the novel software package TOXIFY, allowing users to infer the probability of a given protein sequence being a venom protein. TOXIFY is more than 20X faster and uses over an order of magnitude less memory than previously published methods. Additionally, TOXIFY is more accurate, precise, and sensitive at classifying venom proteins.

Details

Title
TOXIFY: a deep learning approach to classify animal venom proteins
Author
Cole, T Jeffrey; Brewer, Michael S
Publication year
2019
Publication date
Jun 28, 2019
Publisher
PeerJ, Inc.
e-ISSN
21678359
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2248901625
Copyright
© 2019 Cole and Brewer. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.