Full text

Turn on search term navigation

© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The presence of retained colloidal particles causes the retardation of contaminant transport when the contaminant is favorably adsorbed to colloidal particles. Although the particle size distribution affects the retention behavior of colloidal particles, the impact of particle size distribution on contaminant transport has not been reported to date. This study investigates the impact of the particle size distribution of the colloidal particles on contaminant transport through numerical simulation by representing the particle size distribution as a lognormal distribution function. In addition, the bed efficiency and contaminant saturation of simulated breakthrough curves were calculated, and a contaminant transport model with the Langmuir isotherm for the reaction between the contaminant–sand and contaminant–colloidal particle was introduced and validated with experimental data. The simulated breakthrough curves, bed efficiency, and contaminant saturation indicated that an increase in the mean and standard deviation of the particle size distribution causes the retardation of contaminant transport.

Details

Title
Impact of Particle Size Distribution of Colloidal Particles on Contaminant Transport in Porous Media
Author
Jongmuk Won; Lee, Dongseop; Pham, Khanh; Lee, Hyobum; Choi, Hangseok
Publication year
2019
Publication date
Jan 2019
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2250570076
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.