Full text

Turn on search term navigation

Copyright © 2019 Ramin Rahmani et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

Materials with higher wear resistance are required in various applications including cutting elements (drag bits) of soft ground tunnel boring machines (TBM) to increase the productivity and to reduce the risk for workers involved in exchange operations (dangerous hyperbolic conditions). In recent work, two types of materials were produced by combining 3D printing (selective laser melting, SLM) of cellular lattice structures and spark plasma sintering (SPS) methods. The lattices were printed from (1) 316L stainless steel with diamond and (2) Ti6Al4V with nitriding. The effect of diamond content (5%, 10%, and 20%; nickel-coated particles) and unit cell size on performance was studied. The titanium alloy lattice was nitrided to increase its hardness and wear resistance. The effect of nitriding temperature (750°C, 900°C, and 1050°C) and lattice volume fraction (6%, 15%, and 24%, vol.) was investigated, and the optimized conditions were applied. The lattices were filled with 316L and Ti6Al4V powders, respectively, and consolidated by SPS. Samples were tested with the help of laboratory impact-abrasive tribodevice. Laboratory results have shown that both reinforcing approaches are beneficial and allow improvement of wear resistance in impact-abrasive conditions with great potential for TBM or similar applications. Modelling with the help of finite element method has shown that lattice structure enables reduction of peak local stresses in scratching and impact conditions.

Details

Title
Selective Laser Melting of Diamond-Containing or Postnitrided Materials Intended for Impact-Abrasive Conditions: Experimental and Analytical Study
Author
Rahmani, Ramin  VIAFID ORCID Logo  ; Antonov, Maksim; Kollo, Lauri
Editor
Tomasz Trzepieciński
Publication year
2019
Publication date
2019
Publisher
John Wiley & Sons, Inc.
ISSN
16878434
e-ISSN
16878442
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2253094608
Copyright
Copyright © 2019 Ramin Rahmani et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/