It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Autophagy is a self-degradation system wherein cellular materials are recycled. Although autophagy has been extensively studied in yeast and mammalian systems, integrated stress responses in microalgae remain poorly understood. Accordingly, we carried out a comparative study on the oxidative stress responses of Chlamydomonas reinhardtii wild-type and a starchless (sta6) mutant previously shown to accumulate high lipid content under adverse conditions. To our surprise, the sta6 mutant exhibited significantly higher levels of lipid peroxidation in the same growth conditions compared to controls. The sta6 mutant was more sensitive to oxidative stress induced by H2O2, whereas the wild-type was relatively more resistant. In addition, significantly up-regulated autophagy-related factors including ATG1, ATG101, and ATG8 were maintained in the sta6 mutant regardless of nitrogen availability. Also, the sta6 mutant exhibited relatively higher ATG8 protein level compared to wild-type under non-stress condition, and quickly reached a saturation point of autophagy when H2O2 was applied. Our results indicate that, in addition to the impact of carbon allocation, the increased lipid phenotype of the sta6 mutant may result from alterations in the cellular oxidative state, which in turn activates autophagy to clean up oxidatively damaged components and fuel lipid production.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Environmental Biotechnology, KRIBB school of Biotechnology, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
2 Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Campus E 7.1, Saarbrücken, Germany
3 Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea