It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Producing a light structure with affordable cost without sacrificing strength has always been a challenging task for designers. Using a hybrid material approach provides an expanded methodology to combine materials having different costs and properties (for example, combining fibers with high cost and high stiffness such as carbon with low cost, less stiffness fibers such as glass). Hence, a comparative approach is useful for the evaluation of design solutions in terms of weight and cost. In this study, a methodology for a combined weight and cost optimization for sandwich plates with hybrid composite facesheets and foam core is presented. The weight and cost of the hybrid sandwich plates considered are the objective functions subject to required equality constraints based on the bending and torsional stiffnesses. The hybrid sandwich plates considered consisted of thin hybrid composite facesheets, symmetric with respect to the mid-plane of the sandwich plates. The facesheets considered consisted of carbon/epoxy and E-glass/epoxy fiber-reinforced polymer. The layup of the fibers of the facesheets were restricted to some discrete sets of plies having orientation angles of 0, ±45 and 90. A multi-objective optimization technique was applied to minimize simultaneously the weight and the cost of the hybrid sandwich plate. The normalized normal constraint method with Pareto filter was used to generate the Pareto frontier trade-off curve. The Pareto trade-off curve was constructed by optimizing a sequence of combining weight and cost objective functions, while every function was minimized using the Active Set Algorithm.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer