Abstract
Background & objectives: Yttrium-90 ( 90 Y)-based radioembolization has been employed to treat hepatocellular carcinoma (HCC) as commercial radioactive glass and polymeric resin microspheres. However, in India and other Asian countries, these preparations must be imported and are expensive, validating the need for development of indigenous alternatives. This work was aimed to develop an economically and logistically favourable indigenous alternative to imported radioembolizing agents for HCC therapy. Methods: The preparation of 90 Y-labelled Biorex 70 microspheres was optimized and in vitro stability was assessed. Hepatic tumour model was generated in Sprague-Dawley rats by orthotopic implantation of N1S1 rat HCC cell line. In vivo localization and retention of the 90 Y-labelled Biorex 70 microspheres was assessed for seven days, and impact on N1S1 tumour growth was studied by histological examination and biochemical assays. Results: Under optimal conditions, >95% 90 Y-labelling yield of Biorex70 resin microspheres was obtained, and these showed excellent in vitro stability of labelling (>95%) at seven days. In animal studies, 90 Y-labelled Biorex 70 microspheres were retained (87.72±1.56% retained in liver at 7 days). Rats administered with 90 Y-labelled Biorex 70 microspheres exhibited lower tumour to liver weight ratio, reduced serum alpha-foetoprotein level and greater damage to tumour tissue as compared to controls. Interpretation & conclusions: 90 Y-labelled Biorex 70 microspheres showed stable retention in the liver and therapeutic effect on tumour tissue, indicating the potential for further study towards clinical use.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Isotope Production & Applications Division, Bhabha Atomic Research Centre, Mumbai
2 Advanced Centre for Treatment, Research & Education in Cancer, Navi Mumbai
3 Isotope Production & Applications Division, Bhabha Atomic Research Centre, Mumbai, India; Division of Physical & Chemical Sciences, Department of Nuclear Sciences & Applications, International Atomic Energy Agency, 1400 Vienna, Austria