Abstract
Background & objectives: Due to ever growing insecticide resistance in mosquitoes to commonly used insecticides in many parts of the globe, there is always a need for introduction of new insecticides for the control of resistant vector mosquitoes. In this study, larvicidal and adulticidal efficacies of three neonicotinoids (imidacloprid, thiacloprid and thiamethoxam) were tested against resistant and susceptible populations of Anopheles stephensi Liston 1901, Aedes (Stegomyia) aegypti Linnaeus, and Culex quinquefasciatus Say (Diptera: Culicidae). Methods: Laboratory-reared mosquito species were used. Insecticide susceptibility tests were done using standard WHO procedures and using diagnostic dosages of insecticide test papers and larvicides. Adulticidal efficacy of candidate insecticides was assessed using topical application method and larval bioassays were conducted using standard WHO procedure. Results: The results of topical application on 3-5 day old female mosquitoes indicated that resistant strain of An. stephensi registered lower LC 50 values than the susceptible strain. Among the three insecticides tested, thiacloprid was found more effective than the other two insecticides. Culex quinquefasciatus registered lowest LC 50 for imidacloprid than the other two mosquito species tested. In larval bioassays, the LC 50 values registered for imidacloprid were in the order of Cx. quinquefasciatus < An. stephensi (SS) < An. stephensi (RR) < Ae. aegypti. In case of thiacloprid, the order of efficacy (LC 50 ) was Cx. quinquefasciatus < An. stephensi (SS) < An. stephensi (RR), whereas in case of thiamethoxam, the larvicidal efficacy was in the order of An. stephensi (RR) < An. stephensi (SS) < Cx. quinquefasciatus. Interpretation & conclusions: The present study indicated that insecticide resistant strains of mosquito species tested showed more susceptibility to the three neonicotinoids tested, and the possibility of using neonicotinoids for the control of resistant mosquitoes should be explored.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 WHO Collaborating Centre for Phase I Testing of Public Health Pesticides, New Delhi
2 Insecticide & Insecticide Resistance Laboratory, Division of Vector Control, National Institute of Malaria Research (ICMR), New Delhi