Content area
Abstract
The yields and properties of oil and gas fractions coproduced during carbonization of larch wood loaded with Ni 2%, Ni 2%+Ca 1%, and Ni 4% and without catalyst (None) at 700°–900°C were examined to clarify the catalytic effect in terms of conversion into fluid fuels. The net calorific value of oil occurred mainly below 500°C and increased in the order None < Ni 2% < Ni 4% < Ni 2%+Ca 1%, while the yield decreased in this order. The same order held for the production of gases enriched with hydrogen at 500°–700°C. Even above 800°C, markedly promoted evolution of hydrogen took place for all catalyst systems. These observations confirmed the effectiveness of nickel-catalyzed carbonization at 900°C, particularly Ni 2%+Ca 1%, for both upgrading of oil and gaseous fractions, although the quality of oil was not satisfactory. The catalysis of nickel with and without calcium is discussed on the basis of the modified Broid-Shafizadeh scheme, and the scheme was altered to adapt to the high temperature region where oil was no longer produced.
Details
1 Department of Applied and Environmental Chemistry, Kitami Institute of Technology, Kitami, Japan
2 Department of Science and Engineering for Materials, Tomakomai National College of Technology, Tomakomai, Japan
3 Graduate School of Engineering, Hokkaido University, Sapporo, Japan





