Abstract

For the first time, the hydrophilicity of hemp shiv was modified without the compromise of its hygroscopic properties. This research focused on the use of sol–gel method in preparation of coatings on the natural plant material, hemp shiv, that has growing potential in the construction industry as a thermal insulator. The sol–gel coatings were produced by cohydrolysis and polycondensation of tetraethyl orthosilicate (TEOS) using an acidic catalyst. Methyltriethoxysilane (MTES) was added as the hydrophobic precursor to provide water resistance to the bio-based material. Scanning electron microscopy (SEM) and focused ion beam (FIB) have been used to determine the morphological changes on the surface as well as within the hemp shiv. It was found that the sol–gel coatings caused a reduction in water uptake but did not strongly influence the moisture sorption behaviour of hemp shiv. Fourier transformed infrared (FTIR) spectroscopy shows that the coating layer on hemp shiv acts a shield, thereby lowering peak intensity in the wavelength range 1200–1800 cm−1. The sol–gel coating affected pore size distribution and cumulative pore volume of the shiv resulting in tailored porosity. The overall porosity of shiv decreased with a refinement in diameter of the larger pores. Thermal analysis was performed using TGA and stability of coated and uncoated hemp shiv have been evaluated. Hemp shiv modified with sol–gel coating can potentially develop sustainable heat insulating composites with better hygrothermal properties.

Details

Title
Modification of hemp shiv properties using water-repellent sol–gel coatings
Author
Hussain, Atif 1   VIAFID ORCID Logo  ; Calabria-Holley, Juliana 1 ; Jiang, Yunhong 1 ; Lawrence, Mike 1 

 BRE Centre for Innovative Construction Materials, Department of Architecture and Civil Engineering, University of Bath, Bath, UK 
Pages
187-197
Publication year
2018
Publication date
Apr 2018
Publisher
Springer Nature B.V.
ISSN
09280707
e-ISSN
15734846
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2259525761
Copyright
Journal of Sol-Gel Science and Technology is a copyright of Springer, (2018). All Rights Reserved., © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.