Content area

Abstract

Four poly(oxadiazole-imide)s containing naphthalene rings, with different flexibility and molecular weight, are investigated with respect to their rheological properties to establish the optimal processing conditions from solution phase to film state for liquid crystal orientation purposes. The film uniformity and strength are determined by monitoring the flow behavior and chain entanglements. The solution rheological data are in agreement with film tensile testing, revealing that higher molecular weight favors chain entanglements and implicitly the film mechanical resistance. In order to analyze the suitability of these films as alignment layers their surface is patterned by rubbing with two types of velvet. Liquid crystal alignment of 4′-pentyl-4-biphenylcarbonitrile nematic is tested by polarized light microscopy. The resulting behavior is correlated with the polyimide malleability and characteristics of the textile fibers, namely their polarity, size, and mechanical features. The competitive effects between chain flexibility and entanglements, together with the interactions occurring between the polymer and velvet are analyzed in order to explain the surface regularity, which influences the uniformity of the liquid crystal alignment. The contrast between dark and bright states recorded on the liquid crystal cell indicates that some of these polynaphthalimides are promising candidates for liquid crystal display devices.

Details

Title
Chain flexibility versus molecular entanglement response to rubbing deformation in designing poly(oxadiazole-naphthylimide)s as liquid crystal orientation layers
Author
Barzic, Andreea Irina 1 ; Rusu, Radu Dan 2 ; Stoica, Iuliana 2 ; Damaceanu, Mariana Dana 2 

 “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania; Faculty of Physics, “Alexandru Ioan Cuza” University, Iasi, Romania 
 “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania 
Pages
3080-3098
Publication year
2014
Publication date
Apr 2014
Publisher
Springer Nature B.V.
ISSN
00222461
e-ISSN
15734803
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2259740357
Copyright
Journal of Materials Science is a copyright of Springer, (2014). All Rights Reserved.