Content area
Abstract
The effect of crack spacing on the brittle fracture characteristics of a semi-infinite functionally graded material (FGM) with periodic edge cracks is discussed. The incompatible eigenstrain induced in the material due to mismatch in the coefficients of thermal expansion is considered in the analysis. The nonhomogeneity of the material is simulated by an equivalent eigenstrain, whereby the problem is reduced to that of a cracked homogeneous material with incompatible and equivalent eigenstrains. A method is then formulated to calculate the stress intensity factor of periodic edge cracks in such a semi-infinite homogeneous medium and applied to calculate apparent fracture toughness of a semi-infinite FGM from its prescribed composition profile. Inverse calculation is also carried out to compute composition profile from prescribed apparent fracture toughness of the semi-infinite FGM. Numerical calculations are carried out for semi-infinite TiC/Al2O3 FGM and the results are shown in the figures.
Details
1 Department of Aeronautics and Space Engineering, Tohoku University, Sendai, Japan





