Content area

Abstract

The piezoelectric effect is studied for bending and traction tests for two types of structure configurations: homogeneous and composite structures. Mechanical displacements are calculated for traction and bending tests, using FEM for the homogeneous body, where the input material properties are taken from the overall coefficients reported by the Asymptotic Homogenization Method (AHM). A brief theoretical description about the basics of the piezoelectric finite elements and the AHM is given. On the other hand, the calculations of the mechanical displacements are done for the composite structure using FEM where the real data of the material parameters for cylindrical fibers (PZT-5) embedded in a matrix (elastic isotropic polymer) were taken from reported references. A comparison between the results obtained using AHM + FEM and FEM for the homogeneous and the composite structures respectively is reported and shows a favorable result.

Details

Title
Finite element and asymptotic homogenization methods applied to smart composite materials
Author
Berger, H 1 ; Gabbert, U 1 ; Köppe, H 1 ; Rodriguez-Ramos, R 2 ; Bravo-Castillero, J 3 ; Guinovart-Diaz, R 2 ; Otero, J A 4 ; Maugin, G A 5 

 Otto-von-Guericke-Universitaet Magdeburg, Fakultaet fuer Maschinenbau, Institut fuer Mechanik, Magdeburg, Germany 
 Facultad de Matemática y Computación, Universidad de la Habana, Vedado, Habana 4 Cuba, 
 Facultad de Matemática y Computación, Universidad de la Habana, Vedado, Habana 4 Cuba, ; Instituto Tecnológico de Estudios Superiores de Monterrey, Campus Estado de México, División de Arquitectura e Ingeniería, Estado de México, México 
 Instituto de Cibernética, Matemática y Física (ICIMAF), Vedado, Habana 4 Cuba, 
 Laboratoire de Modélisation en Mécanique, Université Pierre et Marie Curie, Paris, France 
Pages
61-67
Publication year
2003
Publication date
Dec 2003
Publisher
Springer Nature B.V.
ISSN
01787675
e-ISSN
14320924
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2261441501
Copyright
Computational Mechanics is a copyright of Springer, (2003). All Rights Reserved.